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A stochastic model for a quantum system is developed in terms of amplitude
densities on an entity. An entity provides an axiomatic description for the set of
tests and states of a physical system and an amplitude density gives a means for
computing probabilities within this framework. The interference and independ-
ence of tests relative to an amplitude density are formulated. Various ways of
combining entities and amplitudes are presented. Superpositions of amplitudes
and superselection sectors in the amplitude space are considered. Finally, sym-
metry groups and systems of covariance on an entity are developed.

1. INTRODUCTION

Over the past 20 years, Foulis and Randall (1972a,b, 1983; Foulis et
al., 1983; Foulis, 1989; Bennett and Foulis, to appear) have formulated a
framework for operational statistics. Their intention was to develop a
language capable of discussing and comparing theories for the empirical
sciences. The latest and most elegant formulation for operational statistics
is based on the concept of an entity (Foulis et al., 1983; Foulis, 1989; Foulis
and Bennett, to appear). An entity provides an axiomatic description of the
tests and states for a physical system. The tests correspond to physical
observables, experiments, or measurements, while the states correspond to
the condition or preparation of the physical system. Although we are free
to perform any tests that are within our capabilities, the states are restricted
to those that are allowed by nature.

An entity alone does not provide a complete description of a stochastic
model for a physical system. We are still missing a method for computing
probabilities in the model. In the present paper, this is accomplished by
introducing amplitudes on an entity. Following ideas of Feynman and Dirac
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(Feynman, 1948 ; Feynman and Hibbs, 1965), we define an amplitude density
as a complex-valued function with certain properties defined on the set of
states. The amplitude of an outcome of a test is then defined as the sum of
the amplitudes of the states that guarantee that outcome. The probability
that an outcome occurs, when tested, is the absolute value squared of its
amplitude. The combination of an amplitude density with an entity then
provides a stochastic model which appears to give a satisfactory quantum
mechanical description of a physical system.

It is sometimes argued that complex amplitudes have no direct physical
significance and hence they should not be included in a basic physical theory.
This may be true in the sense that complex amplitudes are not seen in the
laboratory. However, probabilities do have physical significance and they are
the main contact between theory and experiment. The important question is,
How are these probabilities computed? It appears that in quantum mech-
anics, they must be computed by summing amplitudes and then taking the
absolute value squared. If this is the case, amplitudes can have a place as a
primitive concept in a quantum theory. As an analogy, no one has observed
a colored particle, yet it is generally accepted that quarks (which are them-
selves only indirectly observed) must have a property called color. This
property is responsible for an internal symmetry group which is basic to
quantum chromodynamics. Although color is never observed in the labora-
tory, physicists do not hesitate to incorporate it in a basic theory of elemen-
tary particles.

In Section 2, we set the notation and give the basic definitions that will
be used in the sequel. Various examples are given to illustrate the concepts
that are introduced. Section 3 considers interference and independence of
tests relative to an amplitude density. It is shown that these two concepts
are unrelated. Distributions for tests and probabilities of events are defined.
Hilbertian entities are studied and a comparison is made between the present
framework and that of conventional Hilbert space quantum mechanics.
Section 4 presents methods for combining entities to form new entities. In
particular, the horizontal sum, the direct sum, and the Cartesian product
of entities are discussed. Moreover, relationships between amplitudes on a
combined entity and those on the component entities are derived. In Section
5, we introduce the concept of a sector in the amplitude space of an entity.
Sectors are related to the superposition principle and they describe ampli-
tudes for which a superposition is possible. Considered as a collection of
sectors, the amplitude space becomes a partial Hilbert space. The sector
structure of a simple, but nontrivial, example is derived. Sectors for direct
sums and Cartesian products are considered. Section 6 presents symmetry
groups and systems of covariance on an entity. It is shown that a test can
be represented by a positive operator-valued (POV) measure from its set of
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events into a sector. Tests that can be represented by a projection-valued
measure are characterized. Generalized unitary representations of a sym-
metry group are introduced and it is shown that the POV measure corre-
sponding to a test provides a system of covariance for such a representation.

For alternative approaches to quantum probability, we refer the reader
to Gudder (1988a) and the references cited therein. Besides its great gen-
erality, one of the advantages of the present approach is that it provides a
large number of finite examples that can improve our intuition concerning
quantum probability.

2. NOTATION AND DEFINITIONS

Let & be a physical system and let E be an experiment that can be
performed on &. Each time E is performed, an outcome is obtained and we
denote this set of possible outcomes by E. We call E a test and when E is
performed, we say that the test £ has been executed. In general, various
experiments can be performed on & and consequently there is an associated
collection of tests .o/. We call the union X = o of these tests an outcome
set. A test space is a pair (X, o/) where &/ is a nonempty collection of
nonempty sets satisfying

x=U .« (2.1)
If E Fes/ with EcCF, then E=F (2.2)

Condition (2.2) is called irredundancy. This mild condition is imposed since
there is no need to include a test that is properly contained in another test.
A subset 4 of a test Fes/ is called an event. We denote the set of all events
in E by &(E) and the set of all events by &(«¢). Thus, £(E)=2" and

s(at)= | 2°
Ecsf
An event is proper if it is nonempty and not eqgual to a test.

In the sequel, (X, /) will denote a test space for a physical system &.
Suppose .7 is prepared to be in a certain condition S and let SSX be the
set of outcomes that are possible under this condition. If 4e&(E) and
SN EcA, then the event 4 must occur when E is executed and & is in
condition S. Now suppose we also have 4e&(F) for some other test Feo/.
If F is executed, then for consistency, 4 should again occur; that is, the
occurrence of an event should be independent of the executed test containing
that event. We call S X a support if

AcE(E)nE(F) and SNnEcA imply SAFSA  (23)
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We denote the set of all supports in (X, &) by i(.d). Notice that ¢,
XeX(«) for any test space (X, o/) We denote the set of all nonempty
supports by (). If Ae £(E), SeZ(f), and S n E< A we say that S guaran-
tees A. A set ScX satisfies the exchange condition if

E Feo and SnEcCF imply SnF<E 2.4)
The next lemma shows that (2.3) and (2.4) are equivalent.

Lemma 2.1. (a) A subset SSX is a support if and only if S satisfies
the exchange condition. (b) If SeX(.¢), then S~ E+# (J for all Ee«.

Proof. (a) Suppose S satisfies (2.4), Ae&(E) N &(F), and SNnECA.
Then SN ESF, so by (2.4), Sn F<E. Since SN FE S, we have

SNnFeSnEcA

Hence, (2.3) holds and Sef(d ). Conversely, suppose S e)f(d), E, Fes,
and SN ECF. Letting A= S n E, we have A S F, so Ae§(E) n &(F). Apply-
ing (2.3) gives

SNnFcAcE

Hence, (2.4) holds. (b) Suppose SeZ(«/) and S E=J for some Fe.of.
Since S+ @ and X= | «, there exists an Fe.Z such that S~ F# &J. Then
SN ECF, so by (2.4), Sn FSE. Hence, SN F=SnE, so Sn E#. This
gives a contradiction. W

We can interpret Lemma 2.1(b) as follows. If & is in the condition S
and some outcome is possible, then when any test is executed, an outcome
must occur. It is straightforward to show that £(&) is a complete lattice
under set-theoretic inclusion and that the supremum of a collection of sup-
ports in this lattice coincides with their union. We shall later discuss a
sublattice of (/) called the property (or attribute) lattice. A property will
then be interpreted as a special kind of support that specifies a physical
property of the system.

A probability weight on (X, o) is a function p: X — [0, 1] R such that
Y cex#(x)=1 for all Ee.o/. We interpret u(x) as the probability that the
outcome x occurs when a test containing x is executed. If Ae&(), we
define u(A)=Y._, p(x) and interpret u(A) as the probability that the event
A occurs when tested. We denote the set of probability weights on (X, <)
by Q(«/). For peQ(), we define

supp p={xeX: u(x)>0}
Of course, supp u # ¢J for any ueQ(.+/).
Lemma 2.2. If S=supp u for some peQ(f), then SeX(oF).
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Proof. Suppose E, Fes/ and Sn ECF. Assume SN FZE. Then there
exists ye S n F with y¢ E. Now y¢Sn E and

{(y}Uu(SNnE)eSnF
Hence,

I= ¥y pux)z= ¥ p@+p)=t+u(y)

xeSnF xeSNE

This implies that u(y)=0, which is a contradiction. B

We call SeX(of) a stochastic support if S=supp u for some peQ(A).
Most of the supports that we shall consider in examples are stochastic sup-
ports. In such cases, the easiest way to show that SeX(./) is usually obtained
by showing that S=supp u for some p €Q(s#). The next two examples show
that there exist nonempty nonstochastic supports.

Example 2.1 (Bowtie). Let (X, &/) be the test space with X=
{xi,...,xs}and o/ ={E, F, G, H}, where E= {x,, X3, X4}, F={x1, X3, Xs},
G={x1, %2}, H={x4, xs}. It is easy to check that the only nonempty
supports are S={x;, X2, Xa, X5}, T={x1, x4}, U={x2, x5}, V=X. More-
over, every peQ(of) has the form p(x)=p(xd=a, p(xz)=p(xs)=
1—~a, u(x;)=0 for some ae[0, 1]. It follows that S, T, U are stochastic
supports and ¥ is a nonstochastic support. W

Example 2.2 (D. Foulis). Let R’ be the standard 3-dimensional Euclid-
nean space and let X be the unit sphere in R’. Letting o/ be the set of all
orthonormal bases in R®, we see that (X, .s/) is a test space. Applying
Gleason’s theorem (Gleason, 1957), we find that every peQ(%f) has the
form p(x)={Tx, x>, where T is a positive operator of trace 1. It follows
that every stochastic support is the set-theoretic complement of a subspace
intersected with X. Let y, ze X be linearly independent but not orthogonal
and let S be the set-theoretic complement of {y, —y, z, —z} in X. Then S is
not a stochastic support. However, we now show that S'is a support. Suppose
E Fesd and SNEcCF. IfSnE=E, then ECF. Hence, E=Fand SN FcE.
If S~ E#E, then exactly one of the vectors y, ~y, z, —z is in E. Suppose
yeE and E={y, x;, x,}. Then SnE={x;, x;} &F, so F={x, x;, x;} for
some xeX. It follows that x==y, so SN F={x, x,} €E. The other cases
are similar. W

In practice, there may be supports that do not correspond to a physically
realizable condition or we may want to distinguish a convenient set of
supports. For these reasons, we frequently consider only a sufficiently rich
subset of £(.&/). An entity is a triple (X, o/, L), where (X, &) is a test space
and X is a collection of nonempty supports that covers X (that is, X= U ).
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We call the elements of X states. The previous conditions imply that at least
one outcome is possible for a given state and every outcome is possible for
some state. We frequently denote an entity (X, .«/,X) simply as X. The
following lemma gives a concise characterization of an entity (Bennett and
Foulis, to appear).

Lemma 2.3. Let X be a nonempty set and let o7, Z be two collections
of nonempty subsets of X. Then (X, o/, Z) is an entity if and only if the
following two conditions hold. (a) For every xeX, there exist Ee s/, SeX
such that xeEnS. (b) If E, Feo and SeZX, then Sn ECF implies
SNnFcE.

Proof. If (X, o, %) is an entity, then X=] o/ =] = implies (a) and
(2.4) together with Lemma 2.1(a) imply (b). Conversely, suppose (X, .7, %)
satisfies (a) and (b). The only condition for an entity requiring proof is (2.2).
Suppose E, Fe.of with ECF and let xe F. By (a), there exists an SeX such
that xeS. Since Sn ECF, applying (b) gives xeSn F<E. Hence, FSE,
so E=F. N

A property of an entity X is a union of states in X. Although a property
may not be a state, it is always a support. We denote the complete lattice
of properties of X by #(X). The property lattice £(X) is important for
investigations of the quantum logic structure of X (Foulis and Randall,
1983; Foulis et al., 1983; Foulis, 1989). If Ae&(+/), we denote by [4] the
union of the states that guarantee A. Thus, [4]e.Z(X) and [A4] is the largest
property that guarantees 4. For xeX, we write [x]=[{x}]. We call X unital
if for every xeX there exists an SeX such that S<[x]; that is, .S guaran-
tees x. It follows that if X is unital and Ae&(/) with 4#0, then there is
an SeX such that S<[4]. In Example 2.1, (X, o/, Z(of)) is an entity that is
not unital, since no state guarantees x;. In Example 2.2, (X, &/, Z(«/)) is a
unital entity. The simplest example of an entity is the singular entity
(Xo, o, o), where Xo={x}, o=Zo={{x}}. Of course, this entity is
unital.

In the sequel, X=(X, o7, X) will denote an entity. In order to compute
probabilities of events for X we must endow X with a quantum probability
structure. This is accomplished by introducing an amplitude function
[+ — C. As in traditional probability theory, the amplitude function f pro-
vides a stochastic model for our physical system. Following ideas of Feyn-
man (1948; Feynman and Hibbs, 1965), we interpret f(S), S€X, as the
amplitude that the system is in state S. Moreover, the amplitude of an
outcome x is the sum of the amplitudes of the states that result in x with
certainty when x is tested. Finally, the probability of x is the absolute value
squared of its amplitude. The author has used these same ideas in previous
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developments of quantum probability theory (Gudder, 19885,c, 1989). The
reader should note that a probability weight u does not give an adequate
stochastic model, since p is independent of the state structure. For this
reason, i does not adequately describe quantum interference phenomena.
As we shall see, f does induce a probability weight, although the converse
does not hold in general. With this motivation, we now give precise defini-
tions for these concepts.
A function f: X — C is summable if for every xeX.

2 f@)i<wo (2.5)

Scix}

If /'is summable and xeX, we define

=3 £ (2.6)

seix]

Notice that if xe Ec.of, then
J)=Y {f(S): SnE=x} 2.7

and it follows from (2.3) that (2.7) does not depend on the test E contain-
ing x. A summable function f: X — C is an amplitude if for every E, Fe o/
‘we have

Y IfP=Y /()< (2.8)
xcE xeF
If fis an amplitude, we define |!f||2=zxeglf(x) [ and of course || f]| is
independent of Ee.o/. We denote the set of all amplitudes on X by #(X)
and call #°(X) the amplitude space for X. An amplitude f is an amplitude
density if || f1|=1 and we denote the set of all amplitude densities on X by
D(X). Of course, if fe#(X) with || /| #0 then f/| f | e 2(X). Although
2(X) is important for computing probabilities, it is sometimes more con-
venient to consider #'(X) because of its linear structure. Notice that if
fe@(X ), then u(x)=| F(x)I* is a probability weight on X. We interpret
| f (x)|? as the probability that x occurs when tested in the stochastic model
provided by f. We say that ueQ(/) is induced if there exists an fe@(X )
such that p(x)=| f (x)|* for every xeX. For the entity (X, o, 2(&)) in
Example 2.1, every pe(«/) is induced. Indeed, for a9, 1], deﬁne [(T)=
a’, f(U)= (l—a)”2 J(S)=f(¥)=0. Then f(x))=F(xs)=a"? f(x;)=
7 (x5) (1—a)'”, f(x5)=0, so the general probability weight is induced by
£ If every ueQ(s#) is induced, we say that Q(of) is induced.

Example 2.3 (Little Triangle). Let (X, o) be the test space with X =
{JC| , X2, X3} and «of = {E, F, G}, where F= {X1 B XZ}, F= {)Cz, X3}, and G=
{%1, x3}. The only nonempty support in (X, &) is S=X, so this test space
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generates a unique entity (X, o/, ), where Z=X(s/)={S}. There is only
~ one peQ(f) and this is given by u(x)=1/2 for all xeX. Since [x]= & for
all xeX, it is clear that 2(X )= . Hence, u is not induced. M

Example 2.4 (Wedge). Let (X, o/,Z(s£)) be the entity with X=
{x1,...,%x;} and o =E, F, G, H, where E={x,, X, x3}, F={x, x5, X7},
G={x2,xs5, x5}, and H={x3,xs,xs}. Let pueQ(s«) be defined by
u(x)=1/3 for all xeX. It is easy to check that [x;]=J. Hence, f(x5)=0
for all fe 2(X). It follows that u is not induced. W

Example 2.5 (Wright Triangle). The previous two examples were not
unital. We now consider the unital entity (X, o/, ) with X={x, ..., x6},

o#={E, F,G)
(where E= {xl,X2,X3}, F= {X3, X4, Xs}, and G={X5, X6 5 xl}), and
z={S, T, U}

(where S={x;, x4}, T={x2, x5}, U={x3, x6} ). Let peQ(o) be defined by

() = p(xs) = pu(xe) =1, p(x)) = p{x3) = n(xs) =0. Suppose p is induced by
fe2(X). Then

1=p(u)=1/() P=1/(T)

and

0=p(xs)=|f(xs) P=|F(T) P

This is a contradiction, so u is not induced. W

3. INTERFERENCE AND INDEPENDENCE
For Eeo/ we define the E-Hilbert space

%E=12(E)={g: E-C: Y |lgx)f< 00}

xeE

Of course, addition and scalar multiplication in s, are defined pointwise
and the inner product is given by

(g, h>e= Y. g(x)h(x)

xek

If fe#(X), Ec.o/, we define the (E, f)-wave function fg by f5=f|E. Thus,
fe: E = C with fg(x) =£(x) for all xe E. Notice that fy€ # 5 and the />-norm
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I fell z equals || f]l. Moreover, if fe@(X), then || fzlle=1. For Aeé(),
xeX, fe #(X), we define

FAOE =Y {£(S): S[x] al4]} (3.1

It follows from (2.5) that f(A)(x) exists. If xeE, ACF, E, Fesf/, we can
rewrite (3.1) as

FDX) =Y {f(S):SNE=x,SAFcA4) (3.2)

and the expression in (3.2) is independent of the tests containing x and 4.
Notice that for Fes/, we have f(F)(x) f(x) If fe2(X), we interpret
f (A)(x) as the amplitude that 4 and x both occur. For Ees/, feP(X),
Aeé(f), we define the (E, f)-pseudoprobability of A by

Pr(A)= 3 |f()P (3.3)
xekE
It is clear that Pg (A4)>0 and Pg (F)=1 for all Fe&.
In general, P ((A4) cannot be interpreted as a probability, since it can
be larger than 1 and need not be additive on &(F), Fe. If xeE, ACE,
then applying (3.2) with F=F gives

FA(x)=x.f(x)

Hence, in this case, we have

PerA)=Y 24 =X 1fx)P=3 [
xeE xeA xeA

We conclude that Pg, is a probability measure on «/(E) and we call
Pr /| 6(E) the f-distribution of E. We say that E does not interfere with F
relative to [ if Pg (A)=Prs(A) for every Ae&(F). We interpret this as
saying that if £ is used to test Fevents, then the same distribution is obtained
as when F itself is employed. In this case E contains complete statistical
information concerning F in the model provided by f. Moreover, Pg ; gives
a probability measure on &(F) as well as on §(E). Example 4.1 will show
that noninterference is not a symmetric relation in general.

In traditional probability theory there is never interference between
tests. For simplicity, let (Q, #, u) be a finite probability space and let
E: O — R be a random variable. If 4e# and x is in the range of E, then
the probability that A4 and x occur is

P(4,x)=p[A 0 E™'(x)]
In analogy with (3.3), we would have

Pe (A=) pldn E“l(x)]=ll(A)
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Hence, if F is another random variable, we would have Pg,(A4) = Pr,(A)
for all AeZF.

There is another important case in which we have no interference. A
support S is called dispersion-free if | S~ E|=1 for every Ec.o/. We denote
the set of dispersion-free supports by Z,. For example, T, and U in Example
2.1 are dispersion-free and S, T, U in Example 2.5 are dispersion-free. We
call feD(X) dispersion-free if there exists an SeX;NX such that f(S)=1,
f(T)=0 for TeX, T#S. Then for xeX, Ae&(f) we have

1 if xe8, SnA#d
0 otherwise

i(A)(x)={

If Ee o/, we obtain

PrA)= Y |F (D@ P=If(DP

xeE

where y=S5 n E. Hence,

1 if SNA#Q
Pe (A=
e.s(4) {0 otherwise

It follows that any two tests do not interfere relative to a dispersion-free
density.

Let B Ecsot, fe2(X), and suppose Ae&() with 0< Pg (A4) < 0.
We then define the conditional probability

7 2
P MY ) (C)] 34)

P r(4)

Notice that Pg ,(-|A) is a probability measure on &(E). If A<E, then
(3.4) reduces to

Pr (BN A)

Pr(BlA)=—) A
Ef

(3.5)

and (3.5) is the usual form for a conditional probability. Moreover, if
A=Fe.df, then (3.4) becomes
Pgs(B|F)=Pg(B)

We say that E is independent of F relative to f'if Pg (B|A)= Pg r(B) when-
ever 0< Py ;(A) <o for every B& E, AcF. It follows that E is independent
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of F relative to fif and only if for every B€E, A< F with 0< Pg (A4) <o
we have

Y 1 7(A)(%) ' = Pr.s(B)P,/(4) (3.6)

xeB

For example, let fe 2(X) be dispersion-free with f(S)=1. Then both sides
of (3.6) equal 1 if S~ B# ¥ and SN A# and they equal 0 otherwise.
Hence, any two tests are independent relative to f. Notice that in general,
both sides of (3.6) agree if 4 or B is not proper.

Example 3.1 (Firefly). Let (X, o/,Z) be the entity with X=
{x1, X2, X3, X4}, o ={E, F} (where E={x, x,} and F={x3, x4}, and =
{S,T, U, V} (where S={xi,xs}, T={x2, %}, U={x1,x3}, and V=
{x2, x3}). If feD(X) and f(S)=a, f(T)=b, f(U)=c, f(V)=d, we have

fxy=a+e, f(x)=b+d, f(xs)=c+d, f(xs)=a+b. Of course, since
feP(X), we have

la+cl*+|b+dP=|c+d|*+|a+b]*=1

Moreover, f({x3})(x1) =c¢, f({x:} )(x2) =d, f({xa} )(x1) =a, f({xa} )(x2) = b.

Hence,
Pes({xs})=[c/+|d|’
Pr({x})=|al’+|b?
It follows that E does not interfere with F relative to fif and only if
leP+HldP=|c+dP,  |alP+|b]’=]a+b].
Moreover, E is independent of F relative to f if and only if
lel*=la+c[|c]+]d[’]
lal®=]a+cllal’+|]"]
|dI>=1b+dP[|c*+d]’]
1b1°=1b+d[|al’+|b|"]

Let fi: Z — C be defined by a=1, b=c=d=0. Since § is dispersion-free, so
is f). It follows that E and F do not interfere and are independent relative
to fi. Let f2: 2 — C be defined by a=b=c=—d=1/2. It is easy to check
that e 2(X) and E interferes with F relative to f;. Moreover,

le[P=1#i=|a+cPllc+]d]
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so E is not independent of F relative to f;. Finally, let f3: £ — C be defined
by a=d=i//10, b=c=2//10. It is easy to check that f;e 2(X) and E does
not interfere with F relative to f3. Moreover,

lel?=}#i=la+cl[lc/*+|d|’]
so E is not independent of F relative to f;. W

Example 3.2 (Hilbertian Entity). This example corresponds to the tradi-
tional Hilbert space formulation of quantum mechanics. Let 5# be a complex
Hilbert space. From each 1-dimensional subspace of # choose precisely one
unit vector and let X be the set of all these unit vectors. Let .o/ be the
collection of all maximal orthogonal sets in X and form the test space (X, /).
For xeX, let Sy={yeX: (x, y>#0} and let £= {S,: xeX}. For xe X, define
Ui X - [0,1] by py)=|<{x,¥>>. Then p,eQ(sf) and S,=supp ..
Applying Lemma 2.2, we have that S,eZ(«/) for all xeX. It follows that
(X, o, X) is a unital entity. For xeX, define f;: X — C by f.(S,)=<{x, ».
This is well-defined, since S, #S. if y #z; that is, y > S, is a bijection from
X to X. Notice that S,<[y] if and only if x=y. Hence,

F) =3 {f(S.): S. [y} =£S,) = {x, ) (3.7
and for Ee.o/ we have

Y 1ADP= T [y P=1

yeE YEE

It follows that f,e 2(X) for all xeX and f,(S,) = 1. Moreover, if dim # >3,
then f, is essentially the only amplitude density with this property. Indeed,
suppose fe2(X) and f(S,)=1. Then, as in (3.7), f(S, )—f(y) It follows
from the proof of Gleason’s theorem (Gleason, 1957) that there exists a
unique positive trace class operator T of trace 1 on # such that | f M=
{Ty, y» for all yeX. Moreover, since f (x)=1, we conclude that T is the 1-
dimensional projection onto the span of x. Hence, | f W IP=1<x, 901,
there exists a function ¢: X — R such that

1(S)=f(»)=e*(x, p>

for all yeX. Thus, to within a multiplicative phase factor, f, is unique.
If Ae&(7), then S.<=[A] if and only if z is in the closed span §p 4.
Moreover, S.=[y] A[A] if and only if z=yesp 4. It follows that

SN =T {fLS2): S.<[¥] n[4]}

_ {<x, y>  ifyespa (3.8)
0 otherwise
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For Ees/, we then have

Pes(A)= Y |l IP=T {I<x, y> 1 yeEN5P A} (3.9)

xekE

If Ae&(F), then, by (3.9), Prs(A)=Prs(A) if and only if

YAl I yeEnsp A} = Y K, )1 (3.10)

yed

Suppose E does not interfere with F relative to f,. Then, letting 4= {z} in
(3.10) with ze F, we conclude that if {x, z)> #0, then zeE. It follows that E
does not interfere with Frelative to £, if and only if S, n F< E. The exchange
condition then implies that F does not interfere with E relative to f.
If S,nF=F (when # is separable there are many x satisfying this),
then E=F.

In traditional Hilbert space quantum mechanics, events are usually
described by orthogonal projections. Such a description can also be given in
the present framework. If M is an orthogonal projection, let ASX be an
orthonormal basis for the range of M. Then Ae& (/). Although A4 is not
unique, as we shall see, the amplitude and probability formulas are inde-
pendent of the 4 that is chosen. Conversely, if 4e&(«), then there is a
unique orthogonal projection M, whose range is Sp 4. For an orthogonal
projection M and a corresponding 4, we define the amplitude fY(M )(») =

f{A)(3). Then, by (3.8),

FAMY ()=

{<x ¥y if My=y 3.11)

otherwise

and (3.11) is independent of the choice of 4. Moreover, defining Pg (M) =
Pg 1 (A), we have from (3.9)

Pe (M)=Y {|{x, y>|*: yeE, My =y} (3.12)

Again, (3.12) is independent of the chosen A. If M is a 1-dimensional projec-
tion, then there exists a unique yeX such that My=y. Then (3.7) gives
FdM)={x, y). In general, Py, is not a probability measure on the lattice
of orthogonal projections, although 0<Pg (M) <1 and Pg,(I)=1. How-
ever, if there exists an Ae&(E) corresponding to M, we then have

Pep(M)=3 [<x, p> I =< Mx, x) (3.13)

yeA
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Denoting the Boolean o-algebra of orthogonal projections with this prop-
erty by &£(E), we conclude from (3.13) that Pg, is a probability measure
on €(E). Of course, (3.13) is the usual quantum mechanical formula.

Having noticed the correspondence between events and projections, we
see that tests correspond to the usual quantum observables. For example,
suppose an observable @ corresponds to a self-adjoint operator T with pure
point spectrum {A;, A,,...}. Then by the spectral theorem, we have
T=Y A;P;, where {P;:i=1,2,...} is a unique set of mutually orthogonal
projections such that )’ P;=1. Let E be a test such that P,x=x or P;x=0
for all xeF, i=1,2,.... Then the range of each P; is an event for E. Now
each time @ is measured, one of the 4, is obtained. Since each A; corresponds
to a unique P;, we can identify the outcomes of @ with events of E. If the
eigenvalues of T are nondegenerate, we can identify the outcomes of @ with
the outcomes of £. MW

This last example shows that entities give a generalization of traditional
Hilbert space quantum mechanics. For a discussion of the entity generaliza-
tion of classical mechanics, see Bennett and Foulis (to appear). An entity
X=(X, of,%) is an H-entity if for every xeX there exists a unique S,eZ
such that S,<[x]. An H-entity is injective if the map x + S, is injective.
Notice that the Hilbertian entities of Example 3.2 are injective H-entities.
Examples 2.1, 2.3, and 2.4 are not H-entities. Example 2.5 is an H-entity
that is not injective. Example 3.1 is not an H-entity; however, if we replace
X by £'={S, V}, then we obtain a noninjective H-entity. Notice that an H-
entity X has a rich supply of states (X must be unital), yet the states are
limited, since there is only one state that guarantees each outcome. In
general, if (X, .o/,%) is unital, there may not exist a ¥'cX such that
(X,o/, %) is an H-entity.

Example 3.3. Let X=(X, «, X) be the entity with X = {x,, x,, X3}, &/ =
{E, F} (where E= {x;, x,} and F={x3}),and = {S, T} (where S={x,, x3}
and T={x,, x3} ). Then X is unital. However, X is not an H-entity, since
S, T both guarantee x;. We cannot delete S or T from X, since this would
no longer give an entity. (Even if it were, it would not be unital and hence
not an H-entity.) W

For fe9(X), Ec«, define
E/={xeE: f(x) #0}
The next result characterizes noninterference for H-entities.

Theorem 3.1. If X is an H-entity, then E does not interfere with F
relative to f if and only if there exists a bijection ¢: F; — E, such that
S, = Sy for every yeF;.
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Proof. Suppose there exists a bijection ¢ with the given properties and
let w=¢ . Then for every xeE, we have

) =1(82) =f(Syeo) =F(¥(x))

For A< F we have

FAD) = {£(S): SS[x] ]} ={f (8 i S.nfcd

0 otherwise

Hence,

Pes(A)= Y |J(@ =X {|/(S)*: xeE, S, N FS 4}

xeE

=Y {If()P: xeEy, Scn F 4}

=S (W) P2 w(X)eFy, Sy N FS A}

=Y {If(»)P: yeF,, S, Fe A}

=S {72 yeFn d}= ¥ | f(3) = Prs(4)

yed

We conclude that E does not interfere with F relative to f.
Conversely, suppose E does not interfere with F relative to f. Then for
every yeF we have

S I/ (%) x€E, $.=S8,} =% {| /(S)I*: xeE, S,= S, }
=Y Y{fS):Scixl Ay}

xekE

=¥ 17D 1P=Pe({¥})

xeE

=Pr (¥} =1fWP

Thus, if f( ) #0, there exists xe E such that S,=3S,.. This x is unique, since
if x' € E satisfies Sy = S,, then Sy =S,, which implies x'=x. Let ¢ (y) be the
unique xeE such that S,=S,. Then ¢ is a map from F, into E. Now
¢: F; — E is injective, since ¢(y)=¢ () implies the existence of an xeE
such that S,=S,=S,.. Moreover, ¢(y)eE;, for yeFsince

F @) =f(Ss00) =1(S) = () #0
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We now show that ¢: F; — E is surjective. Suppose there exists an x'e E,
such that x'¢¢ (E;). Then

1= Y [fIP=3 {If (¢ )P 6(»)ed(F)}
yeFy
= T IfoP< ¥ IfPr=1

xed(Fy) xeEf
This is a contradiction. Hence, ¢: F; — E;is bijective. W

Corollary 3.2. In an H-entity, E does not interfere with F relative to f
if and only if F does not interfere with E relative to f.

Corollary 3.3. In an injective H-entity, £ does not interfere with F
relative to f'if and only if E,=F;.

Proof. 1If E;=F;, then letting ¢: F; — E, be the identity function, we
conclude from Theorem 3.1 that E does not interfere with F relative to f.
Conversely, if E does not interfere with F relative to f, then applying
Theorem 3.1, we see that there exists a bijection ¢: F; — E, such that §,=
Ss for all yeE,. Since X is injective, ¢(y)=y, so ¢ is the identity map
and Ef= Ff. |

4. COMBINATION OF ENTITIES

This section considers various ways in which entities can be combined
and studies their amplitude spaces. Let X;, X, be nonempty sets and let
o\ ={As:6€A}, o,={B,: yel'} be collections of subsets of X;, X,
respectively. We denote the disjoint union of X, and X, by X, w.X,. We use
the notation

v ly,={As,B,: €A, yeT'}

A\ ny={AswB,: €A, yeT'}
Of course, &, v o/, and /| A o/, are collections of subsets of X; w.X;. Now
suppose X;=(X,, 1, X;) and X, =(X,, o, X,) are entities. We define the
horizontal sum of X, X, by

X+ Xo=(X 1 wXy, A vl Z1AL)
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and the direct sum of X, X> by
X] ®X2=(X1UX2, Ml /\.5212,21 VZz)

1t is straightforward to check that X, +X, and X; @ X, are entities. Exten-
sions to horizontal and direct sum with an arbitrary number of summands
is routine. An entity is classical if it has only one test. An entity is semi-
classical if it is a horizontal sum of classical entities.

Example 4.1 (Spin Chain). Let X,=(X,, &/, %) be the entity with

={u,d}, o= {{u d}}, and X;={{u}, {d}}. The classical entity X,
descnbes a single spin-1/2 measurement, where u stands for up and d for
down. Suppose a spin-1/2 particle initially has spin up and we then perform
spin measurements at one time unit and at two time units. This can be
described by the semiclassical entity X =X, + X, + X;, where X, is the singu-
lar entity Xo={u}. We can then write X=(X, &/, X), where

X= {uo, Uy, dls Uy, dZ}
o ={Ey, E;, E,}, Eo={uo}, E={u,d}, Ey={u,, db}
= {{u07 Uy, u2}9 {u()s U, d2}: {u09 dl) ul}’ {uo’ dl, dZ}}

Thus, the subscript designates the time at which the measurement is made.
If SeZ, let n(S) be the nomber of successive spin changes. For example,
n({ug, ur,d>})=1, n({uo, dr,us})=2. Define f:Z - C by f(5)=i"®/2,
i=./—1. Then

f(llo)--1 Y 1"(5)— (1+21+1 =i
2552
Ja) =3 S5 Sl =3 (141
f(d)=l(i+i2)=l(-1+i)
) 2
Fu =3 (1+i%)=0

ﬂ@:§m=i
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It follows that fe 2(X). We now consider interference between E; and E;.
We have

S} ) =f {0, i, uz})=%

f({“Z} W) =f{uo, di, u2})= _%

1

FEB) @) =f{uo, uy, b})=2

T} )d)=f{uo, di, dz}):é
Hence,

le,f({uz})=%%0=P52,f({“2})

PE,,f({dz})=%¢1=PEz,f({d2})

so a spin test at time 1 interferes with a spin test at time 2. Moreover

f"({"l})("z)%, f({ul})(dz)=§

f({dn})(u2)=—%, f({d,})(d2)=§

Hence,

1

PEz,f({ul})=5=PEl,f({”1})

PEz,f({dl})=%=PE.,f({dl})

so a spin test at time 2 does not interfere with a spin test at time 1. This
shows that noninterference is not a symmetric relation.

One can make a similar analysis for longer spin-1/2 chains. If measure-
ments are performed at times 0, 1, 2, ..., m, we construct the entity X =
Xo+X,+---+X,, where X, is repeated m times. In this case, we define
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F(8)=i"®/2"/2 1t can then be shown that fe 2(X). Notice that in all these
cases

Y f(S)|=1f ) =1 4.1

SeX

One can also describe other repeated measurements such as higher spin
measurements in this way. Of course, in such cases the definition of f would
be more complicated. W

We now show how to combine amplitudes of the summands to obtain
amplitudes for the horizontal and direct sums. First consider a horizontal
sum X =X, +X,. Suppose fie# (X)), fe€ #(X,) satisfy

(@ Y fi(S), Y fAS») converge absolutely

SreX; S16%y

®) | X fn(Sr)"- Y. fi(S)|=c#0
S1eX 555

© IAl=1r00

Letting ¢, =Y 5,5, /1(81) and 2=} .5, /2(S2), we have | ¢;|=|cz|=c. Then
define fi o f5: £, AZy, — C by
(f12f)(S1w82) =£i(S1) f2(S2) /¢

Let xeX and suppose xeX,. Then
(1) @)=Y { fi o fo(S1wS2): Sy w S [x]}

=% Y AASDL(S): Sielx], 26X}

=L 3 A 3 =25

SeXy Sislx]
For any E e/, we have

Y {fio " @P= T 1Hx)P=1A]

xeEj xeEy
Similarly, if xeX,, then (f; ofz)“(x)=c,fz(x)/c and for any E;esf», we
have

Y AL @ P= T 1A P=1 A

xeEy xekEy

we conclude that f] - e #(X) and that || f; - ]| =] /il = | f2ll. Moreover,
if fie2(X)), € D(X>), then f, o e D(X).
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It is certainly true that (b) and (c) are strong conditions that greatly
restrict the amplitudes that can be combined in this manner. However, there
are amplitudes that satisfy these conditions. For example, suppose X; =X
and f;=f> satisfy (a). As another example, suppose X;, fie2(X;), i=1, 2,
describe spin chains as in Example 4.1. Then (a) is satisfied, || f;|| = | £l =
1, and, by (4.1), we see that (b) is satisfied with c=1.

We next study independence and interference in X =X, +X,. Suppose
fie2(X,) and f,€ 2(X,) satisfy (a) and (b) with c=1. We have shown that
f=fi£,€2(X). Then for Aec&(,) and xeX,, we have

FAE) =Y {f(S18:): 8108, [x] A [4]}
=Y {/i(SDf(S2): Si€[x], S [4]}
=X A{NS): Si€x]} Y { f2(S2): S. <[4}
=/(x) ¥ { £(85): S5 [4]} (4.2)
If Eeo/,, then applying (4.2) gives
PrAA)= Y |J()X)) =T {/(S:): S:=[4]} (4.3)

xekE

Now let B€ E and A< FesZ,. Applying (4.2) and (4.3), we have

Y A& =T 1A PY {£(82): S:<[4])

xeB xeB

=P (B)Pg s(A)

We conclude from (3.6) that E and F are independent relative to f, Hence,
any test in ./, is independent of any test in </, (and conversely) relative
to f. This is not surprising, since f has the form f=f; < f5.

We now consider interference. It follows from (4.3) that Pz (A4)=
Pg, ;(A) for every E, Geoty, Ae&(,). Again, for A< Fesof,, it easily fol-
lows that

Pr(A)=3 | f(D®)*= T | LX) (4.4)
xeF xsA

Now (4.3) and (4.4) certainly look different. In fact, we shall see in Example
4.2 that there can exist an f,e€ 2(X,) such that Pg ;(A) # Pr, s(A). Hence, for
such an f, every Ee/, interferes with every Fe.of,. This is related to the
EPR problem. The systems X, and X, are separated in the sense that the
tests in X| cannot communicate with the tests in X,. However, the states can
“communicate,” so we have interference of tests. Thus, we have nonlocality.
This also shows that there are independent tests that interfere. Combining
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this observation with Example 3.1 shows that there is no relationship
between independence and noninterference. That is, each of the four combi-
nations of independence/dependence and interference/noninterference is
possible.

Example 4.2. Let (X», o/,,Z;) be the classical entity with X,=
{x1, %2, X3}, #2={X,}, and T,={S, T, U}, where S={x;}, T={x,}, and
U= {x3}. Define f;:Z, - C by f2(§)=1/3+i\/§, f(T)=1/3-i3, and
LH(U)=1/3. Then fo(x:)=/AS), fo(x)=/oT), and fa(x3)=f(U), so
€2(X;). Letting 4={x,, xz}eé”(,sziz), we have

1Y { f2(S2): Sos[Al} P=|=+—= lhiz_ﬁﬁ
2(32 2 3 \/_ 3 \/_ 579

1 i .

”‘§+\/_§ P §A [ f2(x)]

We conclude that (4.3) and (4.4) do not agree, in general. W

Let X=X+ X,. We now characterize those fe #(X) that have the form
[=f1 /2, E€H (X)), and fLe#(X,). We say that fe #(X) is factorizable if

(d) Y f(S)=d#0 converges absolutely

SeX

(& if f[(S)= 2 f(Sius), -Slezl,

S2eX,
then f'(85))=0 implies f(S,wS:;)=0forall S;eZ,
) f(S1wS2)/f'(5)) depends only on S, whenever f'(S;)#0

Theorem 4.1. Let fe #(X) with || f|| #0. Then there exist f,es#(X})
and f,e #(X,) such that f=f; - f; if and only if f'is factorizable.

Proof. Suppose f=f; o f>. Then f;, f, satisfy (a)-(c) and f(S)w S,)=
S1(8)) /f2(S3). We then have

Y=Y fi(S) ¥ foS)=cica#0
SeX SieXy S22
and the series converges absolutely, so (d) holds. Since f'(S)) = ¢, f1(S)), if
/(S))=0, then 1(S) =0, so f(§; v S,) =0 for every S,€X,. Hence, (e) holds.
If £/(S1) #0, then
f(S1v8) _ 1

— f2(S:
S8 sz( )
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is a function of only S,, so (f) holds. Conversely, suppose fe#(X) is
factorizable. We first show that /' e#(X,). For xeX,, we have

=3 =3 ¥ fSivsS)

S1ix] Sicx] X
=Y {f(S198): SiuScx}=F(x) (4.5
Hence, for E, Fes#,, we have

Y IS 0P=Y 1f0F= 3 IfP=Y If ()P

xekE xeE xeF xeF

Since || f II%O, if follows from (4.5) that there exists an §,€ZX, such that

J'(81) #0. Define

J(S1v8)
n S =
S7(S) NN

for all S,eX,. By (e),

S'(S)f"(S)=f(81vS2) (4.6)
for all S,€X,, S;eX,. Applying (d) and (e), we have

df"(S2)= Y f($iv8,)

SieX

As in (4.5), if xeX,, then f"(x) =f(x)/d, so f"eH(X,). It follows from
(4.2) that f=f"of". W

Of course, we could interchange the roles of Z, and Z, in the definition
of factorizability.

We now consider the direct sum X=X, ®X,. Let fie#(X,) and
Jfr€#(X,) and define f=f1@f2: L, vI, = C by

£0S) if Sez

f (S)={f2(S) if SeX,

Let xe X and suppose xeX,. Then
J@)= 3 f8)=Y {/(S): SieZ:, Si[x]} =fi(x)

S<ix]

Similarly, if xeX,, f (x)= f"z(x). Hence, for E=E, w E,esf| A o/, we have
Y If@P= T 1If@P+ T 1f0f

xeE xekEy xekEy

= Y IA@ P+ T 1A®P=1A+ 1A

xekE xekFy
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We conclude that fe #(X) and || £ |*= || ill>+ || 2)|% Moreover, if file (X)),
f2€9D(X,), and a, beC satisfy |a”+|b|>=1, then af; ®bfrc D(X).
We now discuss interference and independence. Let

A=Ay A,e8(A 1 A A2)
f=af, @bf,, ;e 2(X), i=1,2, |a*+|b]*=1. If xeX;, then
FAx) =Y {£(S): S<[x] A 4]}
=% {afi(51): S1eXy, Sic[x] A [4,]}
=afi(4:)(x)

Similarly, if xeX,, then f(4)(X)=bfy(4>)(x). For E=E, v Esesl A oA,
we have

Pr (A=Y |f(DX)P

=lal® T 1HUAI@PFIBE L /(AP
xekFy xeEy
=|al’Pg, ;(A1) + 16|’ Pg, (4>) 4.7)

This shows that the distribution of E relative to fis a convex combination
of the distribution of £, relative to f; and that of E, relative to f,. Let F=
Fiw Fyeof | A sfy. 1t follows from (4.7) that if E; does not interfere with F;
relative to f;, i=1, 2, then E does not interfere with F relative to f. Let B=
BywB,e8(E), AcE(F). Then

S/ P=al T 1A P+ T (40P (4.8)

xeB xeBy xeBy

while

Pr /(B)Pr, [(A)={|al’Pg, s(B)) +|b|*Pg, £(B))]
x[|af*Pp, (A1) +1b1*Pp, £(42)] (4.9)

If E; is independent of F; relative to f;, i=1, 2, then (4.8) gives

Y /() P=alPr, 1(A)Pr, 4(B) +|b Pr, 1(A2)Pr, 1(B;)  (4.10)

xeB

In general, (4.9) and (4.10) do not coincide unless ab=0. Thus, even in
the case of componentwise independence, £ and F are not independent in
general.

The next result characterizes amplitude density direct sums.
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Theorem 4.2. Let X=X,06X, and feZ2(X) and assume @(X 1),
2(X;) # . Then there exist ;e 2(X,), i=1, 2, and a, beC with lal*+|b)*=
1 such that f=af @b/, if and only if (1) f (x) =0 for every xeX,; implies
F(S)=0 for every S,€X,, and (2) f(x) =0 for every xeX, implies f(S,) =0
for every S,eX,.

Proof. Suppose fe2(X) and f=af ®bfs, [ie2(Xy), i=1,2. Assume
f (x) =0 for every xe X, . Then for every xe X, afi(x) =f(x)=0. Since there
exists an xeX such thatﬁ(x) #0, a=0. Hence, |b|=1 and f=0f,®bf>. Then
for every S;eX, we have f(S5,) =0f,(S;) =0. Therefore, (1) holds and in a
similar way (2) holds. Conversely, suppose fe2(X) and (1) and (2) hold.
Now for E=E,w E;€a; A a; we have

1= Y |f)P= Y If/P+ ¥ 1fx)P

xeFE xe By xeky

Define a>0 by

F=1-Y |f(x)

xeEy

for a fixed E,e</,. Then for every E,, E{es/, we have

Y If@P= Y IfxP=a

xeFE; xeE}

Similarly, there is a >0 such that for any E,, E;e.o/, we have

Y If0P= Y |f(x)P=p

xekby xeE)

Then a®+5*=1. If a=0, then f(x) =0 for every xeX,, so f(S;) =0 for every
S1€X,. Let fie2(X,) be arbitrary and define f,: X, — C by £2(S5) =f(S2).
To show that /,e 2(X,), let xeX,. Then

LM=Y A= T f(SH= Y f(S)=/(x)

Sr=[x] Sre{x] S<[x]

Hence, if E,e.o/,, we have

Y | A@E)P= Y 10 P=p=1

xeEy xekEy
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Therefore, f,e 2(X>) and f=0f,@f>. Similarly, if b=0, then f=/,@®0f> for
some f,e D(X;), i=1, 2. Now suppose a, b> 0. Define f,: T, - C by £i{(S)) =
f(S1)/a and f>:%;, - C by f2(S2) =f(S,)/b. To show that fie2(X)), let
xeX;. Then

fix=Y fx(Sl)-—- Y fS)=~ Z f(S)——f(X)
Si1<x] 4 5154 qscixn
Hence, for E e/, we have

Y IAP=5 Z fP=1

xe k) ‘(EE[
Similarly, /€ 2(X,). Moreover, f=af ®bf,. A

Corollary 4.3. Let fe 2(X,®X,) and suppose there exist x;eX; such
thatf(x,)#—O i=1, 2. Then there exist ;e 2(X,), i=1, 2, and a, beC with
laf>+]b*=1 such thatf-af.@bfz

Corollary 4.4. Let fe#'(X,®X2) and suppose there exist x;eX; such
thatf(x,);éO i=1, 2. Then there exist f;e #(X;), i=1, 2, such that f=f,Bf>.
The next result shows that the decomposition f=af,®bf2, for

feD(X,0X3)
is essentially unique.
Lemma 4.5. Let f;, f7 e D(X;), i=1, 2, and suppose
af\®bf,=afi®bf;

where a, b+#0. Then there exist ¢, deC with |c]=|d|=1 such that fi=cf],
fo=df3, and a'=ac, b'=bd.

Proof. Since af\(S))=df{(S;) for every S1€Z,, we have
a!
fn(S1)=;f{(S1)

for every S,eX,. Hence, ]A‘l(x)=a’fA,’(x)/a for aill xeX,. Moreover, for
E,esf,, we have

23 17 —i—'
a

xe £y

1= Y [fix)P=

xe Ep

Letting c=a’/a, we have f; = ¢f{ and a’' = ac. A similar result holds forf;. W

We now give an example of an fe 2(X,®X>) which is not of the form
f=af @b, fieD(X)), i=1,2
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Example 4.3. Let (X), o1, %) be the semiclassical entity given by X, =
{X| s X2, X3, X4}, o= {El , F}} (Where El = {x1 s X2} and F] = {X3, X4}, and
21 = {Sl N Sz, S3, S4} (where S] = {xl N X3}, S| = {JC| s X4}, S3= {x2, X4}, and
Ss={x2, x3}). Let X, be the singular entity X>= {xs}, #>={E,}, Z,={Ss},
and E2=S5= {X5}. Deﬁnef: Z VZZ by

S(S)=—f(8)=f(S5)=—f(S)=f(S5)=1

Then fe 2(X,®X>). Indeed, f(xs)=1 and f(x;)=0, i=1, 2, 3, 4. Hence, for
E=E,wE, and F=F, v F, we have

Y fP=Y 1f(x)PP=1

Now f(x)=0 for every xeX,, yet f(S)aéOI for SeX;. By Theorem 4.2,
[#af,®bf, for fe2(X)), i=1,2. N

If A and B are sets, we denote their Cartesian product 4 X B by AB. In
particular, if 4= {a} is a singleton set, we write aB for {a}B and similarly
we write 4b for A{b}. We denote an element (a,b)eAB by ab. If X=
X, o, X), Y=(Y, &, A) are entities, the Cartesian product of X and Y is
the entity

XY= (XY, 4B, EA)

where A B={EF: Ecof, FeB} and TA={ST: SeX, TeA}. It is easy to
check that XY is indeed an entity. For fe#(X), ge#(Y), we define
fe:ZA - C by fg(ST)=f(S)g(T). If xyeXY, we have

() (=Y (BET)= Y f(S) ¥ AT)=F(E)

ST<xy] Scix] T<yl

We then have for any EFe /%

Y IR P=3 &P Y 1P

xye EF xeE yeF

It follows that fge#(XY) and | fgl|=1|f ilgl. In particular, if fe2(X),
ge2(Y), then fge P(XY).
If Ce&(4/B), then
(SN (O)xp) =Y {(fe)(ST): ST<[xy] A[C1}

=Y {f($)g(T): Sc[x], T<[y], ST<[C]}
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In particular, if C=AB, Aeé(), Be&(A), then
(/)" (4B)(xy) =Y { f(S)g(T): S<ix] A[4], T<[y] A [B]}

=f(4)(x)¢(B)(») @.11)
If EFe o/ 4, then applying (4.11) gives
PEp’fg(AB) = PE,f(A)PF’g(B) (412)

Suppose E, E'eof and F, F'e#, E does not interfere with E’, F does not
interfere with F', and ABe&(E’F’). Then from (4.12) we have

Pir,p(AB) = P, f(A)Pp 1(B)= Ppr, s;( AB)

However, every Ce&(E’F’) need not be a product event C=AB and in
general we may have

Per(C)# Ppp, 5(C)

so EF can interfere with E'F’ relative to fg. A similar observation holds for
independence.

Nevertheless, in a certain sense, an fge 2(X'Y) does not give interference
between Eeof and Fed, since for ACE,

Prr, (AF)= P, j(A)Pirg(F) = Pg, £(A4)

Thus, the presence of F does not affect E. Similarly, if B<F, then
Per, z(EB) = Pr(B), so the presence of E does not affect F. We now give a
way of combining amplitudes that does allow interference and which also
describes a temporal structure. Let us view XY as an entity in which we first
execute a test in X and at a later time we execute a test in Y. [A more delicate
temporal description is given by the forward operational produce (Foulis,
1989; Foulis and Randall, 19725).] If SeX and TeA, we can write ST=
\J,erSt, which is interpreted as meaning that the first system is in state §
and later some te T is possible. For fe 2(X) and ge 2(Y) we want to define
a product fg so that f2 (ST) is the amplitude that the first system is in state
S and that, given this fact, the second system is in state T at a later time.
Heuristically, if we assume an additivity and multiplicative condition, we
might have

Je(ST) =i§( 9 St)= LRESH=S) T (@413
€ teT teT
where ¢ is a normalization constant. Of course, the second and third equali-
ties in (4.13) are meaningless in the present context. However, the last
expression in (4.13) does have meaning if the summation converges.
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To make this motivation rigorous, we say that feZ(X) is a strong
amplitude density if f(S)=Y,.sf(s) converges absolutely for every SeX
and fe #(X) with || /|| #£0. If fe D(X) is strong, we define f'=f/|i f ||. Then
f’e2(X). Now suppose fe Z2(X) and ge 2(Y), where g is strong. We then
define fge2(XY) by fg=fz'. We then have

— 1
f(ST)=f(S)g(T) =@f(5) 2 &0

so fg satisfies the last equality in (4.13). If EFe /% and ABe&(4/ %), then
by (4.12) we have

Pir,7(AB) = Pgr, 7 (AB) = Pg (A)Prg(B)
In particular, if A S E, then
Per,f(AF)=Pg ;(A)

Hence, F does not interfere with E in our previous sense. However, if BCF,
then

Pgr,7%(EB) = Pr¢(B)

In general, Py (B)+# Pr,(B), so E interferes with F in this sense.
Aithough strongness is a restriction on an amplitude density, the next
example shows that in certain cases this is no restriction at all.

Example 4.4. Let (X, o7, %) be the firefly entity of Example 3.1. We
shall show that every fe@(X) is strong. Let fe 2(X) with f(S)=a, f(T)=
b, f(U)=c, and f(V)=d. Then, as in Example 3.1, we have

la+clP+|b+d=|c+d*+]a+b|*=1 (4.14)
Now
J(S)=F(x)+f(x)=2a+b+c
F(T)y=F(e) +f(x)=2b+a+d
FUY=](x)) +](x3)=2c+a+d
FV)Y=F(x) +f(xs)=2d+b+c
and

7 (x)=3(a+c)+b+d
Fr(x)=3(b+d)+a+c
Fr(x3)=3(c+d)+a+b
M (x)=3(a+b)+c+d
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Hence,
17 13=13(a+c)+b+d]+|3(b+d) +a+c|’
17 M E=13(c+d)+a+b)*+|3a+b)+c+d)? (4.15)
Now fe#(X) if and only if
17 IE=17 "1 (4.16)
Applying (4.14) and (4.15) gives
177 12=10+12 Re(a+ )b +d)
I 77 I3=10+12 Re(c +d)(a+b)
Hence, (4.16) holds if and only if
Re(a+c)(b+d)=Re(c+d)(a+b) (4.17)
But (4.17) is equivalent to
Re(ab +cd)=Re(ca+db) (4.18)

and (4.14) implies that (4.18) holds. Hence, fe #(X). We must now show
that || 71| #0. If || £} =0, then by (4.15) we have

Ha+e)+b+d=3(b+d)+a+c=3(c+d)ta+b=3(a+b)+c+d=0

But the only solution of these equations is a=b=c¢=d=0, which
contradicts (4.14). W

We call fe #(XY) a product amplitude if f=gh for some ge #(X) and
he #(Y).Forfe #(XY), SeX,and TeA, define f7(S)=f(ST) and ,f(T) =
f(ST). The next result characterizes product amplitudes.

Theorem 4.6. Let fe #(XY). Then fis a product amplitude if and only
if fre#(X) and ;fe#(Y) for every SeX and TeA; and for every §, §'eX
and 7, T"eA we have

FSTY(S'TY=,(ST)f(S'T)
Proof. Suppose f is a product amplitude and f=gh. Then f=h(T)g
and ,f=g(S)h are amplitudes and
ST (ST =g(SY(T)g(S(T") =g(SHh(T")g(S")(T)
=f(ST)/(S'T)
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Conversely, suppose f satisfies the conditions of the theorem. If /=0, then
clearly f'is a product amplitude. Otherwise, there exist S'eX and 7'€A such
that f(S'T") #0. Then for every SeX and TeA we have

JSESTHS'T)_ 1
ST f(S'T)

Other types of entity products can be defined. For example, there are
the forward and backward operational products and the tensor product
(Foulis, 1989; Gudder, 1988a). However, we have not yet developed a
definitive amplitude structure for such products, so we shall not pursue them
here.

S(ST)= Jr(S)s f(T) W

5. SECTORS

Let X=(X, &/, X) be an entity. We define a relation son #(X) by fs g
if for every E, Fe.o/ we have

Y B0 =Y f(x)E0x) (5.1)

xeE xeF

We can write (5.1) as <f £He= (f O randiffsgwewrite (£, g>= <f ks
where E€.o/ is arbitrary. Notice that if s g, then af s g for all aeC. It is

clear that s is a symmetric, reflexive relation and (£, f>=| f||>. However,
as we shall see, s need not be transitive. We call fe #(X) a null amplitude if
| £11=0 and denote the set of null amplitudes by A4"(X). Thus, fe A/'(X) if
and only 1ff—0 If fe A"(X), then clearly /s g for all ge#(X). If fe #(X),

then of course afe #(X) for all aeC. However, if £, ge#(X), we will see
that f+ g need not be in #°(X), so #(X) may not be a linear space. In fact,
Corollary 5.3 will show that af+bge #(X) for all a, beC if and only if
f's g. Since af+ bg is an amplitude superposition, s describes a superposition
relation.

Example 5.1. Let (X, .s/,Z) be the entity of Example 3.3. Define
f.8€9(X) by f($)=g(T)=1, and f(T)=g(5)=0. Then f(x;)=/(x:)=
8(x;)=8(xs)=1 and f(x,) = §(x,) =0. Hence,
Fr 8e=0#1=(F, &>+
so f5g. We now show that i=f+g¢#(X). Indeed, A(S)=h(T)=1 and
h(x,) h(xz)—l h(x3) 2. Hence,

Y 1h(x)P=2#4= Y [h(x)?

xeE xefF
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Letting ues#(X) with u=0, we have fsu and u s g, so s is not transitive.
We now show that A°(X)= {u}. If ve /" (X), then

0= |lol*= 18] =16(x1) {*+|8(x2) = 8(S) | +|6(T)
Hence, v(S)=v(T)=0,s0 v=u. B
Example 5.2. Let (X , o/, L) be the firefly entity of Example 3.1. Define
feH(X) by f(S)=—f(T)=—f(U)=/f(V)=1. Then fis not identically zero,

yet f/=0. Hence, fe /' (X). We now show that A (X)={af" aeC}. Indeed,
if geA#"(X), then in the notation of Example 3.1 we have

atc=b+d=c+d=a+b=0
Hence, a= —c=—b=d. It follows that g=af. B

Lemma 5.1. Let f, g: X - C and q, beC. If f, g are summable, then
af + bg is summable and (af+bg)" =af+bg.
Proof. Straightforward.

Theorem 5.2. Let f, ges#(X). Then fsg if and only if f+g,
frige#(X).

Proof. Since f, ge#(X), by Lemma 5.1, f+g is summable and for
every Ec/ we have

Y I+ )P= Y 1f(x)+8(x)

xeE xeE

=/ IP+]gl*+2Re ¥ f(x)E(x) (5.2)

xeE

By Schwarz’s inequality, the summations in (5.2) are finite. Now if f's g, then
we conclude from (5.2) that f+ge #°(X ). Moreover, f 5 (ig), so f+ige #(X)
Conversely, if f+ge#(X), then from (5.2) we have

Re( f, $>e=Re{ f, &~
for all E, Feo/. If, in addition, /+ ige #(X), then since

Y+ P= Y 1 f(0)+ig(x))

xeE xek
= £1>+ gl +2Im{ £, gDk
we have
Im{ f, gre=1m{ f, &>~
for all E, Feo/. It follows that fsg. W

Corollary 5.3. For f, ge #(X), fs g if and only if af +bge #(X) for
all a, beC.
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For f, ge #(X), we write f~g if f—ge A/ (X).

Corollary 5.4. (1) The following statements are equivalent. (a) f~g,
(b) /=¢, and (c) fs g and fr=g for some Ec. (2) 4 (X) is a complex
linear space. (3) ~ is an equivalence relation.

_ Proof. (1) To prove (a)=>(b), suppose f~g. By Lemma 5.1, we have
f—8=(f—g)" =0,s0f=§. To prove (b) = (c), suppose f= . Then for every
Eeof, we have (f, $>==| f | so fsg. Moreover,

fE=f|E=§|E=gE

To prove (c) = (a), suppose (c) holds. Then, by Theorem 5.2, f—ge#(X)
and

| f—egl=Wf—8ele=|fe—gelle=0

Hence, f~g.

(2) Itis clear that 0e A(X) and if f, ge A"(X), then af+bge &' (X) for
all a, beC.

(3) It is clear that ~ is reflexive and symmetric. To prove transitivity,
suppose f~g and g~ h. Then by Part (2) we have

f=h=(f-9t(@g—hes(X) N

For A= #(X) we write
A'={fe#(X): fsgforallged}

We call A= #(X) an s-set if A< A°. Thus, A is an s-set if and only if /s g for
all f, ge A. It is clear that singleton sets are s-sets and hence every fe #(X) is
contained in an s-set. Moreover, by Zorn’s lemma, every s-set is contained
in a maximal s-set. We denote the collection of maximal s-sets by .#(X)
and we call the elements of .#(X) sectors. A sector is a maximal set of
amplitudes for which superpositions are allowed. They correspond to super-
selection sectors for a physical system. Let Me#(X). If feM and aeC,
then af s g for all geM. Since M is maximal, afe M. If f, ge M, then by
Theorem 5.2, f+ges(X). Also, it is clear that (f+g) sh for all he M.
Again by maximality, f+geM. Hence, M is a linear space. Moreover, by
Corollary 5.4, /°(X) is a subspace of M. For fe M, denote the equivalence
class f+.A4°(X) by [ f] and define {[ f], [g])={[, g>. It is straightforward
to show that this is well-defined and gives an inner product on M/ A"(X).
In the sequel, we shall delete the bracket on [f] and simply denote M/
A (X) by M. In this way, M becomes an inner product space. We say that
X=(X, o, L) is complete if every Me #(X) is a Hilbert space. We shall
show that if there exists a finite Fe.of or if X = (X, o, Z()) is semiclassical,



Amplitudes on Entities 495

then X is complete. Moreover, it follows from Theorem 7 of Gudder (1986)
that if (=¢) is induced, then X is complete. If X is complete, #°(X ) becomes
a partial Hilbert space (Gudder, 1986, 1988a). In general, for Me #(X) we
define dim M as the cardinality of any maximal orthonormal set in M.

‘We now investigate the sector structure of #(X). The simplest case is
when X is classical and £ =2(.¢). In this case #(X) can be identified with
[?(X) and #(X) is itself the only sector. In general, for Me #(X) and
Eest, define UY: M — I*(E) by U¥f=fz. Then U2 is a linear transforma-
tion and

CUEY, Us'ey=<[. &>

Hence, U is a unitary transformation from M into #z=1*(E). We thus
have the following result.

Lemma 5.5. If Me #(X), then dim M <| E| for every Ee«/.

The next result improves Lemma 5.5 for the case of a semiclassical
entity with a test of smallest cardinality.

Theorem 5.6. Let X=(X, o/, (o)) be semiclassical and suppose Ee.o/
satisfies |E|<|F| for every Fes/. Then, for every Me.#(X) we have
dim M =|E| and M is complete.

Proof. Fix Me#(X). By Lemma 5.5, dim M <|E|. Letting g, AeA,
be an orthonormal basis for M, we have |A|<|E|. For Fed, let g, r=
U¥g,. Then {gsr: AeA} is an orthonormal set in # r. Since | E| <| F|, there
exists a unitary transformation Uy : # g — #'psuch that Urgs r=g1 r, A€A.
Hence, g1.r= UrU g1, AeA. Let hoe # rand define h: X — C by h|F=Urgh,
for every Fe.s/. Now #(X)# {0} since there are dispersion-free amplitude
densities in (X ), for example. Hence, dim M > 1. If | E]=1, we are finished,
so suppose | E|=2. Since X is semiclassical, for every xeX there exists an
S.eZ() such that S, <[x] but S, &[y] for every yeX with y#x. Define
f:X(4) » C as follows. If xeE, f(S)=he(x); if xeF, F#E, f(S)=
(Urho)(x); f(S)=0, otherwise. Then f(x)=ho(x) for xeE, and f(x)=
(Urhy)(x) for xeF, F#E. Hence,

Y 1P =1Ushol?= hol*= ¥, 1/(x)”

xeF xekE

We conclude that fe #(X). Also, f5g:, A€A, since
(Fs 825=Urho, UrU¥g2>r=<ho, Ub'gide=<J, 80k

It follows that feM*® and since M is maximal, fe M. Since Ug'f=ho,
UY: M — #p is surjective. Hence, dim M=|E| and M is complete. M
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The center of #(X) is defined as
ZI#(X)]={feH(X):fsglorallge# (X))} =#(X)"

It is straightforward to show that Z[#(X)] is a closed subspace of every
sector.

Theorem 5.7. If 2,<X, then dim Z[A#(X)]=|n H|.

Proof. If n /=, we are finished. Otherwise, for xe n &7, let S,=
{x}. Then clearly S,eZ,SX. Let f,e 2(X) be the corresponding dispersion-
free amplitude, f.(S) =1, f(§)=0, S#S,. Then f,(x)—l and fx( y)=0,
y#x. If ge#(X) and Eeof, we have (g,fv> g(x). Hence, f.s5g, so
JL€Z[H#(X)] for all xeof. Moreover, the f,., xe N/, are mutually ortho-
gonal. Hence, dim Z[#'(X)]=|n«/|. A

For x, yeX we write x Ly if x#y and there exists an Ee.</ such that
x, yeE. We say that s#(X) is strong if x Yy implies that there exists an
fe2(X) such thatf(x) =7( y)=1and if x#y, x Xy implies that there exists
a geP(X) such that g(x)=—g(y)=1.

Example 5.3. Let (X, o/, (7)) be semiclassical with | E|>2 for every
Ee.o/. We shall show that #°(X) is strong. If x#y and x Xy, then there exist
E, Feo/, E#£F, such that xeE and yeF. Hence, there exists an SeX, such
that Sc[x] A[y]. Define f:Z — C by f(S)=1 and f(T)=0, T#S. Then
fe2(X) and f(x)=f(y)=1. For each ze S there exists S.€X(%) such that
S:<[z] and S:£[z'], z'#z. Define g: X — C by g(S.)=1=-—g(S,) and for
each Ge.of select a zeG and let g(S.) = 1. Moreover, let g(S) =0 otherwise.
Then ge2(X) and g(x)=—4g(y)=1. A

Theorem 5.8. If £,% and s#(X) is strong, then
dim Z[A#(X)]=|n |

Proof. Suppose x¢ n.o/. We now show that there is a y#x such that
yXx. Assuming otherwise, we have x L (X \{x}). Let Eeo/ with x¢E. Since
H#(X) is strong, there exists a ge 2(X ) such that §(x)=1. Since x LE, g(y) =
0 for all yeE. But then |g| =0, which is a contradiction. Since #°(X) is
strong, there exist k, '€ 2(X) such that.

hx)=h(y)=k(x)y=—H(y) =1
Now let fe Z[#(X)]. Since fs h, we have
FOh(x) =1 (»)h(y)
so f(x)=f(y). Moreover, f s/, so
JOR ) =1 (R (7)
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Hence, f(x)=-*f"(y), SO f(x)=0 for all x¢ not. If N/ =, then f=0.
Otherwise, for xe N/, construct ;e Z[#'(X)] as in the proof of Theorem
57.Now ¥, ., | f(z)[P<o0 and

/= Y% fof

zen

Hence, { f;: ze n.o/} is an orthonormal basis for Z[#(X)]. We conclude
that dim Z[#(X)]<|n./| and the result follows from Theorem 5.7 W

It is sometimes useful to embed #(X) in a Hilbert space and we now
give a construction that does this in certain cases. We say that #(X) is
embeddable if there exists a Hilbert space #, and an injection
¢: H(X) — H, such that Sp $[H#(X)]=# and ¢|M is a lincar unitary
transformation for every Me #(X).

Theorem 5.9. If | o7 | is countable then #(X) is embeddable.

Proof. Let #(Z) be the set of summable functions on X. Then P(T) is
a complex linear space under pointwise addition and scalar multiplication
and the set of null amplitudes 4°(X) is a linear subspace of Z(%). Letting
L(E)=F(Z)/N(X), we have # (X)L (X). Let o ={E,, E,,...} and
let a,> 0 satisfy Y a;=1. (If |/ |=n< oo, then let i=1, .. ., n; otherwise, i=
1,2,....) Let

%={fef(2):al Y 1fP+a TSP+ < oo}

xe Ey xeEy

For f, ge#, define
(frgx=Ya ¥ f(0EX

xekE;
This exists and is finite, since, letting
1/2 1/2
bf=( )3 lf(X)Iz) ) ci=< % I§(X)|2>
xeFE; xekE;

we have by Schwarz’s inequality

KA gl<Ya T 1701180

xeF;

< Z a;:bic;
=Y (ai”’b)(a%c))

<X aib%)]/z(z afca?)l/z <0
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It is now easy to show that (&, {-,- >o) is an inner product space. Now
H(X) < H, since, for fe #(X), we have

Ya Y IfGP=YalfIP=1fP<w
xeE;
Let ¢: #'(X) — # be the inclusion identity map and let #'o=5p #'(X) <
H# . To show that #(X) is embedded in s, suppose f, ge # (X ) with f s g.
Then
(frg0=Ya Y, fED=Yalf,e)=Cfg> W

xeE;

It appears to be quite difficult to characterize the sector structure for
an arbitrary #(X), although, as we shall now see, this can be done for
specific examples. If fs & and {f, g> =0, we write flg.

Example 5.4. We shall characterize the sectors of the Wright triangle.
Let (X, o, X) be the entity with X = {x/, ..., x¢}, &/ = {E, F, G} (where E=
{X],Xz,X3} F= {X3,X4,X5} and G= {xl,xs,xs} and X= {S|,S2,S3,S4}
(Where S] {XZ, X5} S2 {x. . X4} S3 = {x3, x6} and S4— {XZ, X4, XG} )
When we considered the Wright triangle in Example 2.5 we only included
the states Sy, S,, S;. As we shall see, in that case #(X) = Z[A#(X)], so there
is only one sector, namely #'(X ) itself, and dim 2 (X )= 3. With the addition
of S,, the situation becomes much more interesting, It is easy to check that
L=%,. Let fe#(X) and suppose f(S;)=a;€C, i=1, 2, 3,4. We then have

f(x.) az,f(xz) a1+a4,f(x3) a3,f(x4) a2+a4,f(x5) a, andf(xs)—

as+a,. Moreover, since || /|| = || frll = || f¢ll, we have
la >+ ay+as)>=|a, P +]as+as)?
las |+ a1+ as*=|a > +]as+ au
las > +ay+ as|*=|a:)* +|as +as)?
This is equivalent to
Re(a, —az)ds=Re(a; —as)as=Re(a;—a3)a, =0 (5.3)

If a,=0, we call fa type | amplitude and if a,#0, fis a type 2 amplitude.
We say that Me #(X) is of type 1 if every fe M is of type 1; otherwise, M
is of type 2. 1t follows from Lemma 5.5 that dim M <3 for every Me.#(X).

Lemma 5.10. A sector Me #(X) is 3-dimensional if and only if M is
type 1.

Proof. Since fsg for any f, g of type 1, there is precisely one type 1
sector. This sector is generated by any three linearly independent type 1
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amplitudes and is 3-dimensional. Conversely, suppose Me.#(X) is 3-dimen-
sional and let f}, £, f> be an orthonormal basis for M. If f;, f3, f; are all type
1, then any linear combination of them is type 1, so M is type 1. Suppose
fi, f2 are type 1 and f; is type 2. Letting f1(S;) = a;, f2(S;))=b;, and f3(S;) =
¢, i=1,2,3,4, we have ay=bh,=0, ¢4#0. Let a=(a;,a;,a;) and b=
(b, b3, b)eC?, and let d=(d,, d3, d») C* be a unit vector that is orthogonal
to both a and b. Since f; 1f,, a and b are mutually orthogonal. Since f5.Lf,
and f3 L1, we have (¢, ¢3+ ¢4, ¢2) orthogonal to @ and b. Hence, there exists
a;eC, |as|=1, such that

ci=a.d,, 3+ cs=aads, Cr=0xd>
Similarly, there exist a,, a,€C, ja,|=|a;|=1, such that

;=0 , -t ca=aard,, C3== oy

e=ayds, a+ca=ad, C3=ads

If d;#0, then @,=a,. Similarly, if d»#0, ¢,=a3 and if d4,#0, a,=0a;.
Hence, if d3#0, c,+cs=a,d,=c,, which implies ¢,=0, a contradiction.
Therefore, d;=0. Similarly, d,=d, =0, which is a contradiction. Hence, if f;
and f, are type 1, then f; is type 1. Suppose f; is type 1 and f5, f; are type 2.
Again, let £,(S)=b;, 5(S))=¢;, i=1,2,3,4. Then bs, c4#0. Then letting

g=h=21, (5.4)
Cy4

we have geM and g is type 1. Also, g#0 and filg. Hence, M has an
orthonormal basis with two type 1 elements. This reduces to the previous
case. If f1, f2, f» are all type 2, then again defining g as in (5.4), we have
geM is of type 1. This reduces to the previous case. W

It follows that there is precisely one type 1 sector and this is the only
3-dimensional sector. The next lemma characterizes the type 2 sectors.

Theorem 5.11. Every type 2 sector is 2-dimensional and has the form
M=sp{ f, g}, where fis type 1 with f(S)=1, i=1,2, 3, while g is type 2
and satisfies ZL ,8(8)=0.

Proof. Let g be a type 2 amplitude, where f(S;)=b;, i=1,2,3,4. We
shall show that there exists an fe # (X ) such that /1 g. We can assume that
bs=1, since otherwise we could consider b;'g. Let b=>5b7+b?+bi. Assume
by+b,+bs#—1 and let

c=(1=b)/(b;+b,+b3+1)
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Let f(S)=a;, i=1,2,3,4, where a;=—c—b;, i=1,2, 3, a,=1. Since b=
it follows from (5. 3) that Re b, =Re b,=Re b;. Hence Re a, =Re a;=Re a3;
so (5.3) is satisfied, which implies that fe # (X ). Now

<j; §>E=a252+(a1 +a4)(l;, +54) +a3l;3
=£115] +a252+a353+a| +b—| +1
=—c(b_|+52+b_3)—b—c+ 1 =0

Similarly, <f, #>r={ f, £>¢=0. Hence, fLg. Now suppose b, + b, + by = —1.
Leta;,=1,i=1,2,3, a;=0. Then

<ﬁ §>E=4252+a|(b_1 +54)+a3b_3
=b,+by+by+1=0

Similarly, ¢ f, &= (]A‘, £>6=0. Thus, in both cases we have f1g. Hence,
if M is a type 2 sector, dim M>2. Applying Lemma 5.10, we have
dim M =2,

Now let M be an arbitrary type 2 sector. Then M has the form M=
sp{ /, g}, where fLg. We can assume that fis type 1 and g is type 2. Indeed,
if fand g are type 1, then M would be type 1, which contradicts Lemma
5.10. If f and g are type 2, we can find a linear combination % of fand g
that is nonzero and of type 1. Take ue M such that ##0 and ulh. Then
M=sp{h, u}. We thus have M =sp{ f, g}, where f'is type 1, g is type 2, and
flg. Again, letting f(S;)=a; and g(S;)=b;, i=1, 2, 3, 4, we have

<ﬁ §e=ah;+a,(by+bs)+ah;=0
<f; §>F=a|51 +02(52+54) +a31;3=0
<J;, §e=ah, +as(by+by)+ab,=0

It follows that a, = a, =as and b, + b, + b; + by = 0. Without loss of generality,
we can assume that g,=a,=a;=1. M

Let f be the type 1 amplitude in Lemma 5.11. It follows from Lemmas
5.10 and 5.11 that for M, M,e .#(X) with M;# M, we have M, n M,=
sp{ f}. Moreover, Z[#(X)]=sp{ f}. Notice that X is not strong, since
there does not exist a ge Z(X) satisfying §(x;) = —g(x4) = 1. This'shows that
the strongness condition cannot be deleted from Theorem 5.8.

We now consider sectors in a direct sum X;@®X,. Since null amplitudes
are identified with the zero amplitude, it follows from the proof of Theorem
4.2 that fe #(X,@X-) if and only if f=£,®f; where fie # (X)), i=
Moreover, f (x) =/(x) for every xeX, and fx)= = f,(x) for every xeX,. It is
clear that the components f;, f; of f are unique to within a null amplitude.
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Lemma 5.12. If f, ges#(X,@X,), then fsg if and only if fisg
and f35g,.

Proof. Suppose f; sg, and f35 g,. For E\ef |, E;esf, and E=E|VE,
we have

Y f0EX =Y A&+ T AXER)

xekE xeEy xe k>

and the right-hand side is independent of E;, E,. Hence, f's g. Conversely,
if fsgand E,, E{es,, then for a fixed E,e.o/» we have

Y A@E@= Y fOED - Y A&

xeEy xe EywE, xe by
= ¥ J@E0- ¥ A&
= T /0
xekEj

Hence, f; s g1 and similarly f,5g,. B
For o, # (X)), i=1, 2, we use the notation
AR A={fi®Lfr: fieA,, fr€45}
Theorem 5.13. M < #(X,®X,) is a sector if and only if M=M,®M,,
where M;e #(X}), i=1, 2.
Proof. Suppose
McH#H(X,DX,)

is a sector. Let M;={f;: fe M} < #(X,), i=1,2. Then M = M,®M, and by
Lemma 5.12, M;= M}, i=1,2. Suppose gieM;. If g,eM,, let g=g,Dg>.
Then, by Lemma 5.12, ge M° = M. Hence, g,e M, . Therefore, M,= M7, so
M e #(X,) and similarly M,e #(X,). Finally, if g;e M;, i=1, 2, then

g=g1@g2EMx=M

Hence, M=M,®M,. Conversely, let M;e#(X;), i=1,2, and let M=
M ®M,. By Lemma 5.12, M= M?®. Let ge M*, g=g,@g,. By Lemma 5.12,
gieMi=M; i=1,2. Hence, ge M. Therefore, M= M?, so

Me (X, ®X,) R

For inner product spaces #,, # 2, let # @®H#, be the usual inner
product space direct sum. That is,

f:ééfz';{(‘l’l, Va), VIEXH 1, Y22}
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where addition and scalar multiplication are defined componentwise and

w1, w2), (91, 9200 =<Ky, 01D+, ¢2)

Lemma 5.14. If M;e #(X,), i=1, 2, then the map
J: Mi®M, - Mi®M,
given by J(/1®/f2)=(f1,/2) is an isomorphism.

Proof. Clearly, J is a bilinear bijection. Moreover, for E=E; v E,esf
we have

1@, 81880 = ., (19" (x)(g:1Dg2) " (x)

xeE

=Y 8@+ ¥ H0EF)

xeE| xeEp

=(f1,12), (81, 8> =KJ(/1®12), J(g:Dgz)> A
Finally, we consider the Cartesian product X;X,. Recall that

fEW(X],Xz)
is a product amplitude if f=f; f,, fe# (X)), i=1,2.

Theorem 5.15. Let f, ge 3# (X, X,) be product amplitudes. Then f's g if
and only if one of the following conditions holds: (a) f; s g, and f35 g5,

(b) filg, (c) frles.
Proof. 1t is clear that f's g if and only if

iy 80el o 820m=< s 0Rfos 82D, (5.5)

for every E,, Fie sy, E,, Fesl,. If (a), (b), or (¢) holds, then (5.5) holds,
so f s g. Conversely, suppose fsg. If fi Lg, and f>Xg, then there exists an
E\esf, such that (f, g1)r #0. Letting F;=E, and applying (5.5) gives
f25 8. Similarly, f s g,. Now suppose f; 5 g:. Then there exist Ey, Fies/
such that {fi, &> #< /1,8~ Letting F,=E, and applying (5.5) gives
{f2, 82)5,=0. Hence, f, L g,. Similarly, f, 5 g, implies fiLg,. W

For Mie #(X,), i=1, 2, we define
M\ M,={ /i f>: fieM,,i=1,2}

It follows from Theorem 5.15 that M, M, is contained in a sector of
H (X1 X5). In general, M, M, is not itself a sector. However, M =35p M| M,
is a sector and we call M a product sector.
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6. SYSTEMS OF COVARIANCE

Let X=(X, &/,2) be an entity and let Me.#(X). In the sequel, we
shall assume that X is complete. This assumption is made for simplicity. It
is not absolutely necessary, since the results of this section could be proved
by working with the completion of M. If Ee«/, we have seen that the map
UY: M — # defined by UY f=f; is a unitary transformation (not neces-
sarily surjective). Moreover, 4 — y 4 is a projection-valued (PV) measure
from &(E) to # . We then have for 4e&(F).

PeA)=Y |f()PP=<x U¥S, U¥S>

xeA

In this sense, E is represented by the PV measure 4 — x4 on #'g.
We would now like to represent E on M. Since U¥ M is a closed sub-
space of # g, we have

He=UEMS(UEM)*

Define V¥:#g— M by V¥=U¥" on U¥M and by V¥=0 on
(U¥M)*. Letting P be the orthogonal projection of # onto U¥M, it is
clear that UY V¥ =PY and V¥ UY =1I. ForAe&(E), define Q¥ (4): M - M
by

Q5 (A)=VE y aUE = (UEY ' PE UL
Then QY (A) is a linear operator and for every fe M we have
QEA >=VEXAUE £, > ={PEy UL UE [
=AU f, U f>=Pg 1(4) 20
It follows that Q£(A) is a positive operator on M. Moreover, if 4e&(F),
we conclude that Q2'(A4) = Q¥ (4). We also have that A4 — Q2 (A4) is a posi-
tive operator-valued (POV) measure from &(E) to M. Indeed.
QX (E)=Vi'ysUs' = VE'U' =1
and if 4,e&(E) are mutually disjoint, we have
(VA =VEy o aUr'=VE' Y 1 4UE
=Y Vi UE'=Y QF(4)

where convergence is in the strong operator topology.

We have thus represented £ by the POV measure Q¥ (A) on M. The
advantage of this representation is that we can consider all tests simul-
taneously on the same Hilbert space M. The disadvantage is that we have
replaced a PV measure by a POV measure. In the literature, POV measures
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are frequently called unsharp observables and PV measures are called sharp

observables (Davies, 1976; Holevo, 1982; Prugovecki, 1984).

Theorem 6.1. The following statements are equivalent. (1) Q' is a PV
measure. (2) PYy =z .PY for all Ac&(E). (3) x.U¥= PY¥y U¥ for all

Ae&(E)

Proof. For notational simplicity, we delete the subscript E and the
superscript M. To prove (2) = (3), multiply (2) on the right by U. To prove

(3) = (1), suppose (3) holds. Then for every Ae&(E) we have
(A =Vx UV U=V 1PxaU=V2.U=Q(4)

Hence, Q(A) is a projection. Moreover, Q(A4) is self-adjoint, since it is posi-
tive. To prove (1) = (2), suppose Q is a PV measure. For Ae£(E) and fe M,

let x Uf=f,+f,, where fie UM, f,e(UM)"*. Then Q(4)f=Vf; and
QAYf=VXUQA =V aUVfi=Vxaf
Hence,
Viafi=0A)f=Vh
Thus, P(fi— x4/1) =0, so that
Xafi=fi—xafre(UM)*
Since fie UM, we have
0=Cfr, xafi>=lxafil?
Hence, x4 f1=0, so x+/1=/i. Since f;= Py ,Uf, we have
PyaUf=x4PxaUf
Since this holds for all fe M, we have
Py P=x4Px4P
for all Ae&(E). Hence,
PraP=xaPysP
Adding (6.1) and (6.2) gives
P=2y Py P+P—x,P—Py,P

(6.1)

(6.2)

Hence, applying (6.1) gives y ,P= Py 4 P. Taking adjoints gives Py 4= Py 4P,

so (2) holds. W



Amplitudes on Entities 508
Let E(M) < E be defined by
E(M)={xeE: 7(x)#0 for some feM}

and let E(M Y=xeanH . Then E(M ) is a closed subspace of # ¢ and vy
Mc E(M ). Thus, we can consider U as a map from M into E(M ).

Corollary 6.2. Q¥ is a PV measure if and only if UY: M~ E(M) is
surjective.

Proof. Suppose UY'M = E(M )- Then P = g gy, so for every A &(E)
we have

PE Y 4= XX a= X aX Eany=X4PE

Applying Theorem 6.1, we find that @ is a PV measure. Conversely,
suppose Q% is a PV measure and let xe E(M). Then there is an fe M such
that UY f(x) #0. Applying Theorem 6.1(3) gives

x}— X UE = E X U UEM
X = Xixy l:f(x) £ UE f(x) €

Hence,
E(M)=5p{x: xeE(M)} s U¥M
We conclude that U¥M=E(M). W

Example 6.1. Let (X, o/, %) be the entity with X = {x,, x2, y1, ¥2, ¥3},
s/ =(E, F) (where E={x,, x»} and F={y,, y>, y3}), and

E={Sl9 SZ, S3, S4}

(where §; = {xn,y.} Sy= {xzaJ’h)’z} S3= {xl,xz,yz} and S, = {xl,xz,y3})
Define fi, f2: £ = Cby fi(8)) =1, /1 (§) =0, S§#S1, and /(81) =0, /2($2) =1,
and fo($5)=£2(Ss)=1/y2. Then fi(x)=fi(y)=1, /ilx)=0, x#x1, y,
S0y =fa(31) =0, fo(x2) =1, and fo(y2) =fo(y3) = 1//2. Clearly, 1, € D(X).
Since f1.L f2, it follows from Lemma 5.5 that M=sp{ fi, f2} is a sector in
H(X). Since UY: M - Hp= E(M ) is surjective, it follows from Corollary
6.2 that OF' is a PV measure. In fact.

OF{xih=h, OF({x}) =12
OF({xi )= 0F ({x2})/1=0
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Denoting the 1-dimensional projection onto the subspace spanned by f as
Py, we have Q2'({x,}) =Py and UF'({x,} )= P,. However, Uf": M — H# p=
F(M) is not surjective, since

dim UYM=2<3=dim F(M)

Hence, by Corollary 6.2, Q7' is a POV measure but not a PV measure. In
fact,

oF(mPA=h

OF (= VEr o UF fo=VEx s (f2)Fr=0

OF ({1} fi=0F ({ys))/1=0

OF ({}"2} )Mo= VF X {3} 4 (f)r= (U )" P 2o (Dr
=(U¥)™ l(fZ)F 2f2

oy} fi=1ts

Hence,

OF ({»})="Pr, OF'({2}) = (1/2)Py,

and

0F({r:))=(1/2)P, ®

In order to consider interference in the present context, we must extend
the definition of QY. We say that Ae&(H) is (E,f)-bounded if
f(A)IEleF If A is (E, f)-bounded, we define QN (4)f= VIE”[Af(A)]E]
This reduces to the usual definition of QZ, since for 4 € E we have f(A4) | E=

XafE, 50
le(A)f: Vg’XAfE= VngA Ug!f

Theorem 6.3. Let E, Fe .o and fe M and suppose Uz’ is surjective. Then
E does not interfere with F relative to f'if and only if every Ae £(F) is (E, f)-
bounded and

IQE (S N =L QF" (DL 1> (6.3)

Proof. Suppose E does not interfere with F relative to f. Then for
Ae&(F) we have

I F(A) | 2= P s(A)=Pr,(A) <0
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Hence, A is (E, f)-bounded. Moreover, since UY is surjective,
Q¥ (A 1P=1(UEY T (3= f(A)I2
=Pr () =(QF (L[>
Conversely, if every Ae&(F) is (E, f)-bounded and (6.3) holds, we have

Pr(A)= Qe (A P ={QF(A) [, )= Prs(A)
Hence, E does not interfere with F relative to /. W

If Aeé() is (E, f)-bounded for every fe M, then Q}(A) becomes a
linear operator on M. We can then obtain the following stronger result.

Corollary 6.4. If UY is surjective, then E does not interfere with F
relative to every fe M if and only if every Ae&(F) is (E, f)-bounded for all
feM and we have

F(A)* Q5" (4) = 0F'(4)

Proof. By Theorem 6.3, E does not interfere with F relative to every
feM if and only if (6.3) holds for all fe M, Ae&(F). But then

IQE (A IP<IQH I fIP<I 117

so Q(A) is a bounded linear operator on M for all Ae&(F). Moreover,
for all fe M and Ae&(F), we have

COE(A* QA Y= I1QE A =L QF DL 1>
The result now follows. W

If g, and g, are maps from X into X, we denote their composition by
g1 ° 8. A symmetry group on an entity (X, o, X) is a group G of bijections
g: X — X with group operation g,g, =g o g, such that for every ge G, Ee o/,
and SeX we have

gE={gx:xeE}lesd
gS={gx:xeS}ek

Notice that g: o/ — o/ and g: £ — X are bijections. If a group of bijections
G satisfies gEe s/ for every Eesf and geG, then G automatically preserves
supports, so the condition gSeX for every SeX and ge( is not as strong as
it first appears. Indeed, suppose S is a support, geG, E, Feof. Since a
bijection preserves inclusions and intersections, if (gS)n ESF, then
Sn(g'E)ycg'F. Since S is a support, Sn(g 'F)cg 'E. Hence,
(gS) N FCE, so gS is a support. In particular, if G is a group of bijections
on X such that gEe.o/ for all geG and Ec«/, then G is a symmetry group
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on (X, o, Z(o4)). In the sequel, G will denote a symmetry group on an entity
X, o, X).

Lemma 6.5. For xeX, Se€X, and geG, Sc{x] if and only if gS<[gx].

Proof. Suppose S<[x]. Then there exists an Ees/ such that SN E=
x. Since a bijection preserves intersections, gS n gE=gx. Hence, gS<{gx].
Applying g™ to this result gives the converse. W

For fe#(X) and geG, define U, f: X — C by U, f(S)=f(g"'S).

Lemma 6.6. (1) The map U, is a bijection on #(X) satisfying
Um2 U,, U, for all g, g2€G. (2) if Me #(X), then U Me #(X) and U,
is a unitary transformation from M onto U, M.

Proof. (1) For fe#(X), we have by Lemma 6.5 that
U f)®)=F Uef($)= % flg'S)= ¥ f&'S)

S<ix] S<(x] g 'scle %]
=f(g"'x) (6.4)
For Ec.s/, we have
YU @P=Y 1fgDP= T 1fgDP=IfI

xek xeE g_'xeg_‘E
Hence, U, fe#(X). It is clear that U, is injective. To show that U, is

surjective, suppose hec#(X). Define /X > C by f(S)=h(gS). Then
fes#(X) and U, f=h. Finally, for g,, g.€G, we have

Uie, /(S)=1(27 'g1 'S)=Up, f(g1'S) = Uy, Uy, ()
(2) Suppose fi 5 f2. Then for any Ee.o/, applying (6.4), we have

Y (U ) )T, ) )= ¥ /g™ 0 fag™'x)

xeE xeE

= ¥ flg'whE

gxegE

= Fde =N 1)

Hence, U, fi s Uy f>. It easily follows that U,Me.#(X). The above also
shows that U, is a unitary transformation from M onto U, M. W

For Me#(X), we write gM=U,Me.#(X). We call g U, a
generalized unitary representation of G. Let Eeod, he # . For xegEe,szi
define U, h(x)= =h(g"'x). It follows from (6.4) that (Ugf)"(x)= Ugf(x) for
all xeE. As in the proof of Lemma 6.6, U, is a unitary operator from 'z
onto J# g satisfying Uy, = U‘,;,I ng for all g1, g,€G. Hence, g — U, is a unitary
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representation of G. We say that geG leaves Me#(X) invariant if
gM =M. We use the notation M= { f: feM}.

Corollary 6.7. gM= M if and only if ifgﬂ oM.
Proof. Suppose gM =M and let feAAl . Then U, feM, so
Upf=(Upf) €M
Hence, U M CM Conversely, suppose U M< M and let feM. Then feM

$0 (Ugf) =U, fe M. Hence, U,feM and gM<M. Since gMe#(X),
eM=M. N

The next result shows that Q2 is a generalized system of covariance
for U,

Theorem 6.8. For every geG, Me #(X), Ee«/, and Ae&(E) we have
Us ' Q"(A) U= Qg"i(g ™' 4) (6.5)

Proof. We first show that

UE U, =T, Ughc (6:6)

Letting fe M and xeE, we have
(UBU )(x) = (U )" ()= Up f(0) = (G Vg5 ) ()

5o (6.6) holds. We now show that

U,PMp=PEMU, (6.7)
Let he UMz M. Then h= UM . f, fe M, and by (6.6),

Uh=U,UM; f=UMU, fe UsMgM
Thus,
P Uyh=Ugh= U, PYich

Now suppose he (UM iz M)* . ThenUPMlEh 0. Let ¥ e UsMgM. Then i’ =
UEMf', f'egM. Hence, by (6.6),

U7 W= U U = UM Up f e UM M
Hence,

Uk, iy =<k, U =0
so that U,he(Ug"gM)*. Hence, P£"U,h=0 and (6.7) holds.
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We next show that
U, VMe=VEMD,

By (6.6) we have
U,=VE" U, UM,
Hence, applying (6.7) gives
U VM= VEMD, PMi = VEMPEM U, = VEM T,
We now show that
XU U= Upg 14 U
Letting fes#(X), we have, by (6.6),
(X AU U f)(x) = 1 a(X)(UE" Up f )(x)
=24 (G2
=xea(g” XU e ) g ' %)
= Uty U/ ) (%)
Finally, applying (6.9) and (6.8) gives
A Uy= VE 4 US U= VEY D10 Ut
= UVt sx e 14U e= U Q76 (g 7' A)
The result now follows. W
Corollary 6.9. (1) If G leaves all sectors invariant, then
Us 'QE (A Us = 05"6(g™' )

for all ge G, Me #(X), Eeof, and Aeé(E).
(2) If G leaves all sectors and tests invariant, then

Uy ' Q¥ (AU, =08'(g7'4)
for all geG, Me #(X), Eec/, and AeE(E).

Gudder

(6.8)

(6.9)

(6.10)

Equation (6.10) is usually called a system of covariance for U,. It is
easy to show that G leaves all sectors invariant if and only if fs 4 implies
fs Uyh for all geG. This is equivalent to the following condition. If £, he M

for any Me.#(X), then, for every E, Feo/ and geG, we have

Y k(g™ x)=3, f)h(g'x)

xeE xeF
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Example 6.2. Let (X, o/, X) be the Wright triangle of Example 5.4. If
we draw X as an equilateral triangle, then it is easy to see that the symmetric
group on three elements G={I, R, R*, F,, F,, F5} is a symmetry group
on X. Define fie2(X), i=1,...,5, as follows: f(S;)=4dy, i, j=1,2,3,4,
and

1
J5(81) = f5(82) =15(S3) = —f5(S4) =$

We then have

Ji(e2) =i (xs) =falx1) =Fo(x4) = fa((x5) = F(xe)
=Jax) =falx) =falxe) =1

fs(x,) =f5(xs) =f5(x5) = %

and f{(x) =0 otherwise, i=1, . . ., 5. We have seen in Example 5.4 that M, =

sp{ fi, /2, f3} and M,=sp{ f1,fs} are sectors in #(X). Notice that E, F, G

do not interfere with each other relative to f;, i=1, 2, 3, 4, since these ampli-
tude densities are dispersion-free. For f5s we have

i, xe} ) = —Fo((x3, %4} )(x2) = s, %))} (x5) =%

Hence,

Pr ({3, x4})=%¢%=PF,f5({x3, Xa})

and E interferes with F relative to fs.

Since U is surjective, by Corollary 6.2, Q2" is a PV measure. In fact,
it is easy to show that Q¥'({x,;}) =Py, QF'({x2})=P;, and Q2"({x:})=
Py, In a similar way Q7' and Q" are PV measures. However,

U¥:M,=sp{ fa| E, [s| E} # Enr,

so by Corollary 6.2, Q" is a POV measure which is not a PV measure. In
fact, it can be shown that Q2*({x,})= P, and

05 ({x:})= 08"({x:} ) =3 Py,

Similar results hold for Q> and Q&™
Let U, be the generalized unitary representation of G on (X ) defined
previously. Since G leaves M, invariant, we have

U ' Qi (A) U= Q1 (g™' A)
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for every geG, He s/, Ac£(H). We now consider M,. Since U,=1 on M,,
we have

OHH(A) =0 (g7 )

for all geG, Heof, and Aec&(H).

We now show that a generalization of the Nagy extension theorem
holds for this example. Since QF"', He o/, are already PV measures, we need
not consider them now, so we study Q2 Hes/. Let 2 =C% with inner
product

S 8>=5F e+ 8)r+ < T, £)6]

Then 5 is a Hilbert space and if f s g, this reduces to the usual inner product
on #(X). Hence, S (X) is embedded in # and M, (and M) are closed
subspaces of 5. Let P be the projection of # onto M, . Notice that dim »# =
4, since fi, /2, f3, f4 are linear independent. It is easy to show that there exists
an orthonormal basis gy, g2, g3, g4 for 5 such that g,=f;, g1 f5, and

<g1,f.~s>=<gz,fs>=%

Define the PV measure Pg from &(E) to 5# by
Pe({x1})=Pg,  Pe({x2})=Py+ Py,  Pe({xe})=Py,
Then
PPg({x1})=(Py,+ Pr) Py, = Py, P,
PPg({x3})=(Py,+ Pp)Pg,= Py Py,
PPg({x2}) = (Pp,+ Pp)(Pg,+ Pp,) =Py,
Hence,
PPp({x3}) fs= Py, Py, 84=0
PPE({XI})fS__-PfSPglﬁ:% Pfsgl=%f5
Similarly, PPx({x;})fs=0 and PPx({x;})fs=3fs. Hence,

PP({x})P=Qr"({x;}), i=1,23

We conclude that Q" is the projection of a PV measure. A similar result
holds for Q¥ and Q4. m
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