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A stochastic model for a quantum system is developed in terms of amplitude 
densities on an entity. An entity provides an axiomatic description for the set of 
tests and states of a physical system and an amplitude density gives a means for 
computing probabilities within this framework. The interference and independ- 
ence of tests relative to an amplitude density are formulated. Various ways of 
combining entities and amplitudes are presented. Superpositions of amplitudes 
and superselection sectors in the amplitude space are considered. Finally, sym- 
metry groups and systems of covariance on an entity are developed. 

1. INTRODUCTION 

Over the past 20 years, Foulis and Randall (1972a,b, 1983; Foulis et 
al., 1983; Foulis, 1989; Bennett and Foulis, to appear) have formulated a 
framework for operational statistics. Their intention was to develop a 
language capable of discussing and comparing theories for the empirical 
sciences. The latest and most elegant formulation for operational statistics 
is based on the concept of an entity (Foulis et al., 1983; Foulis, 1989; Foulis 
and Bennett, to appear). An entity provides an axiomatic description of the 
tests and states for a physical system. The tests correspond to physical 
observables, experiments, or measurements, while the states correspond to 
the condition or preparation of the physical system. Although we are free 
to perform any tests that are within our capabilities, the states are restricted 
to those that are allowed by nature. 

An entity alone does not provide a complete description of a stochastic 
model for a physical system. We are still missing a method for computing 
probabilities in the model. In the present paper, this is accomplished by 
introducing amplitudes on an entity. Following ideas of Feynman and Dirac 
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(Feynman, 1948; Feynman and Hibbs, 1965), we define an amplitude density 
as a complex-valued function with certain properties defined on the set of 
states. The amplitude of an outcome of a test is then defined as the sum of 
the amplitudes of the states that guarantee that outcome. The probability 
that an outcome occurs, when tested, is the absolute value squared of its 
amplitude. The combination of an amplitude density with an entity then 
provides a stochastic model which appears to give a satisfactory quantum 
mechanical description of a physical system. 

It is sometimes argued that complex amplitudes have no direct physical 
significance and hence they should not be included in a basic physical theory. 
This may be true in the sense that complex amplitudes are not seen in the 
laboratory. However, probabilities do have physical significance and they are 
the main contact between theory and experiment. The important question is, 
How are these probabilities computed? It appears that in quantum mech- 
anics, they must be computed by summing amplitudes and then taking the 
absolute value squared. If this is the case, amplitudes can have a place as a 
primitive concept in a quantum theory. As an analogy, no one has observed 
a colored particle, yet it is generally accepted that quarks (which are them- 
selves only indirectly observed) must have a property called color. This 
property is responsible for an internal symmetry group which is basic to 
quantum chromodynamics. Although color is never observed in the labora- 
tory, physicists do not hesitate to incorporate it in a basic theory of elemen- 
tary particles. 

In Section 2, we set the notation and give the basic definitions that will 
be used in the sequel. Various examples are given to illustrate the concepts 
that are introduced. Section 3 considers interference and independence of 
tests relative to an amplitude density. It is shown that these two concepts 
are unrelated. Distributions for tests and probabilities of events are defined. 
Hilbertian entities are studied and a comparison is made between the present 
framework and that of conventional Hilbert space quantum mechanics. 
Section 4 presents methods for combining entities to form new entities. In 
particular, the horizontal sum, the direct sum, and the Cartesian product 
of entities are discussed. Moreover, relationships between amplitudes on a 
combined entity and those on the component entities are derived. In Section 
5, we introduce the concept of a sector in the amplitude space of an entity. 
Sectors are related to the superposition principle and they describe ampli- 
tudes for which a superposition is possible. Considered as a collection of 
sectors, the amplitude space becomes a partial Hilbert space. The sector 
structure of a simple, but nontrivial, example is derived. Sectors for direct 
sums and Cartesian products are considered. Section 6 presents symmetry 
groups and systems of covariance on an entity. It is shown that a test can 
be represented by a positive operator-valued (POV) measure from its set of 
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events into a sector. Tests that can be represented by a projection-valued 
measure are characterized. Generalized unitary representations of  a sym- 
metry group are introduced and it is shown that the POV measure corre- 
sponding to a test provides a system of covariance for such a representation. 

For  alternative approaches to quantum probability, we refer the reader 
to Gudder  (1988a) and the references cited therein. Besides its great gen- 
erality, one of  the advantages of  the present approach is that it provides a 
large number of  finite examples that can improve our intuition concerning 
quantum probability. 

2. NOTATION AND DEFINITIONS 

Let 50 be a physical system and let E be an experiment that can be 
performed on 50. Each time E is performed, an outcome is obtained and we 
denote this set of  possible outcomes by E. We call E a test and when E is 
performed, we say that the test E has been executed. In general, various 
experiments can be performed on 5 ~ and consequently there is an associated 
collection of  tests d .  We call the union X = U d of  these tests an outcome 
set~ A test space is a pair (X, d )  where d is a nonempty collection of  
nonempty sets satisfying 

X = ~ d (2.1) 

If E, F e d  with E~_F, then E = F  (2.2) 

Condition (2.2) is called irredundancy. This mild condition is imposed since 
there is no need to include a test that is properly contained in another test. 
A subset A of  a test E e d  is called an event. We denote the set of  all events 
in E by g ( E )  and the set of all events by g ( d ) .  Thus, g ( E )  =2  e and 

g ( d )  = [,..) 2 ~ 
E~,~' 

An event is proper if it is nonempty and not equal to a test. 
In the sequel, (X, d )  will denote a test space for a physical system 50. 

Suppose 50 is prepared to be in a certain condition S and let S~_X be the 
set of  outcomes that are possible under this condition. I f  A e g ( E )  and 
Sc~E~_A,then the event A must occur when E is executed and 50 is in 
condition S. Now suppose we also have A e$ ' (F)  for some other test F e d .  
If  F is executed, then for consistency, A should again occur; that is, the 
occurrence of  an event should be independent of  the executed test containing 
that event. We call S~_X a support if 

A s g ( E ) c ~ g ( F )  and S n E ~ _ A  imply S n F ~ _ A  (2.3) 
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We denote the set of all supports in (X, ~r by ~ ( d ) .  Notice that ~ ,  
X 6 ~ ( ~ )  for any test space (X, ~r We denote the set of all nonempty 
supports by Y~(d). IfA eg(E) ,  SeY~(d), and S n E ~ A  we say that Sguaran- 
tees A. A set S~_X satisfies the exchange condition if 

E, F6zr and SnE~_F  imply SnF~_E (2.4) 

The next lemma shows that (2.3) and (2.4) are equivalent. 

Lemma 2.1. (a) A subset S~_X is a support if and only if S satisfies 
the exchange condition. (b) If S6Y~(d), then S n E v ~  for all E e d .  

Proof. (a) Suppose S satisfies (2.4), A 6 r  g(F),  and SnE=_A. 
Then SnE~_F, so by (2.4), Sc~F~_E. Since SnFc_S,  we have 

SnF~_SnE~_A  

Hence, (2.3) holds and S ~ ( d ) .  Conversely, suppose S~ Z (d ) ,  E, F ~ d ,  
and S n E~_F. Letting A = S n E, we have A _~F, so A ~g(E)  n g(F).  Apply- 
ing (2.3) gives 

SnF~_A~_E 

Hence, (2.4) holds. (b) Suppose S ~ Z ( d )  and S n  E = ~  for some E ~ r  
Since S r  and X =  U d ,  there exists an F ~ d  such that S n F ~ J .  Then 
SnE~_F, so by (2.4), SnF~_E. Hence, S n F ~ _ S n E ,  so S n E # ~ .  This 
gives a contradiction. �9 

We can interpret Lemma 2. l(b) as follows. If 5 r is in the condition 
and some outcome is possible, then when any test is executed, an outcome 
must occur. It is straightforward to show that s  is a complete lattice 
under set-theoretic inclusion and that the supremum of a collection of sup- 
ports in this lattice coincides with their union. We shall later discuss a 
sublattice of Z ( d )  called the property (or attribute) lattice. A property will 
then be interpreted as a special kind of support that specifies a physical 
property of the system. 

Aprobability weight on (X, d )  is a function p : X ~ [0, 1] _ R such that 
Y'.x~p(x) = 1 for all E ~ d .  We interpret p(x) as the probability that the 
outcome x occurs when a test containing x is executed. If A ~ 8 ( d ) ,  we 
define p (A) = ~x~A P (x) and interpret p (A) as the probability that the event 
A occurs when tested. We denote the set of probability weights on (X, d )  
by ~(~r For p ~ ( ~ r  we define 

supp p = {x~X: p(x )>  O} 

Of course, supp p r ~ for any p ~ ( ~ r  

Lemma 2.2. If S=supp  p for some p ~ ( d ) ,  then S~Y~(~'). 
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Proof Suppose E, Fs~r  and Sc~E~F. Assume ScaF~E. Then there 
exists y e S  ca F with yCE. Now yq~S ca E and 

Hence, 

{y} u (S ca E)~_S Ca F 

1= }-" /~(x)> 2 I~(x)+p(Y)=I+p(Y) 
x ~ S  c~ F x E S  c~ E 

This implies tha t /z (y)  =0,  which is a contradiction. [] 

We call S e E ( d )  a stochastic support if S = supp/1 for some/z e f~(d) .  
Most of the supports that we shall consider in examples are stochastic sup- 
ports. In such cases, the easiest way to show that SsY~(d) is usually obtained 
by showing that S =  supp/l  for some/z s lY(d) .  The next two examples show 
that there exist nonempty nonstochastic supports. 

Example 2.1 (Bowtie). Let (X, d )  be the test space with X =  
{ x l , . . . ,  xs} and d = {E, F, G, H}, where E =  {x2, x3, x4}, F =  {xl, x3, xs}, 
G= {x~,x2}, H= {x4, xs}. It is easy to check that the only nonempty 
supports are S =  {xl, x2, x , ,  xs}, T=  {x,, x4}, U= {x2, xs}, V=X. More- 
over, every p s f ~ ( d )  has the form ii(xi)=l~(X4)=a, / l(x2)=p(xs) = 
l - a ,  /z(x3)=0 for some as[0,  1]. It follows that S, T, U are stochastic 
supports and V is a nonstochastic support. [] 

Example 2.2 (D. Foulis). Let ~3 be the standard 3-dimensional Euclid- 
nean space and let X be the unit sphere in N3. Letting d be the set of all 
orthonormai bases in N3, we see that (X, d )  is a test space. Applying 
Gleason's theorem (Gleason, 1957), we find that every p e f ~ ( d )  has the 
form p(x) = (Tx, x), where T is a positive operator of trace 1. It follows 
that every stochastic support is the set-theoretic complement of a subspace 
intersected with X. Let y, zeX  be linearly independent but not orthogonal 
and let S be the set-theoretic complement of {y, - y ,  z, -z}  in X. Then S is 
not a stochastic support. However, we now show that S is a support. Suppose 
E, F s  d and S c~ E c F. If  S ca E = E, then E ~ F. Hence, E =  F and S ca F c E. 
If  Sc~ECE, then exactly one of the vectors y, - y ,  z, - z  is in E. Suppose 
yeE  and E={y,x , ,x2} .  Then ScaE={x,,x2}c_F, so F={x, xi,x2} for 
some xsX.  It follows that x = +y, so S ca F =  {xi, x2} c__E. The other cases 
are similar. [] 

In practice, there may be supports that do not correspond to a physically 
realizable condition or we may want to distinguish a convenient set of 
supports. For these reasons, we frequently consider only a sufficiently rich 
subset of E ( d ) .  An entity is a triple (X, d ,  E), where (X, d )  is a test space 
and E is a collection of nonempty supports that covers X (that is, X = U E). 
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We call the elements of Y~ states. The previous conditions imply that at least 
one outcome is possible for a given state and every outcome is possible for 
some state. We frequently denote an entity (X, ~r Y~) simply as X. The 
following lemma gives a concise characterization of an entity (Bennett and 
Foulis, to appear). 

Lemma 2.3. Let X be a nonempty set and let d ,  Z be two collections 
of nonempty subsets of X. Then (X, d ,  Y~) is an entity if and only if the 
following two conditions hold. (a) For every xeX ,  there exist E e d ,  SeE 
such that x e E n S .  ( b ) I f  E, F e d  and SeE, then S n E ~ _ F  implies 
S c~ F~_E. 

Proof. If (X, d ,  Z) is an entity, then X =  U d =  U Z implies (a) and 
(2.4) together with Lemma 2.1 (a) imply (b). Conversely, suppose (X, d ,  E) 
satisfies (a) and (b). The only condition for an entity requiring proof is (2.2). 
Suppose E, F e d  with E~_F and let xeF. By (a), there exists an SeE such 
that xeS .  Since Sc~ E~_F, applying (b) gives x e S c ~ F ~ E .  Hence, F~E,  
so E=F. �9 

A property of an entity X is a union of states in X. Although a property 
may not be a state, it is always a support. We denote the complete lattice 
of properties of X by L#(X). The property lattice ~ ( X )  is important for 
investigations of the quantum logic structure of X (Foulis and Randall, 
1983; Foulis et al., 1983; Foulis, 1989). If A e g ( d ) ,  we denote by [A] the 
union of the states that guarantee A. Thus, [A]e~ (X)  and [A] is the largest 
property that guarantees A. For xeX,  we write [x] = [{x} ]. We call X unital 
if for every x e X  there exists an SeE such that S_[x] ;  that is, S guaran- 
tees x. It follows that if X is unital and A e g ( d )  with A ~ 0, then there is 
an SeE such that S~_[A]. In Example 2.1, (X, d ,  E ( d ) )  is an entity that is 
not unital, since no state guarantees x3. In Example 2.2, (X, d ,  E ( d ) )  is a 
unital entity. The simplest example of an entity is the singular entity 
(X0, d o ,  E0), where X0 = {x}, do=Y.o = {{x}}. Of course, this entity is 
unital. 

In the sequel, X = (X, d ,  Z) will denote an entity. In order to compute 
probabilities of events for X we must endow X with a quantum probability 
structure. This is accomplished by introducing an amplitude function 
f :  E ~ C. As in traditional probability theory, the amplitude functionfpro- 
vides a stochastic model for our physical system. Following ideas of Feyn- 
man (1948; Feynman and Hibbs, 1965), we interpret f (S ) ,  SeE, as the 
amplitude that the system is in state S. Moreover, the amplitude of an 
outcome x is the sum of the amplitudes of the states that result in x with 
certainty when x is tested. Finally, the probability of x is the absolute value 
squared of its amplitude. The author has used these same ideas in previous 
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developments of quantum probability theory (Gudder, 1988b,c, 1989). The 
reader should note that a probability weight/a does not give an adequate 
stochastic model, since p is independent of the state structure. For this 
reason,/1 does not adequately describe quantum interference phenomena. 
As we shall see, f does induce a probability weight, although the converse 
does not hold in general. With this motivation, we now give precise defini- 
tions for these concepts. 

A function f:  Z ~ C is summable if for every x~X. 

F, If(s) l< oo (2.5) 
s =_ Ix] 

If f is summable and x~X, we define 

f ( x ) =  Z f (S )  (2.6) 
s=_ [x] 

Notice that if x e E e ~ ,  then 

](x)=~" {f(S):  S n  E=x) (2.7) 

and it follows from (2.3) that (2.7) does not depend on the test E contain- 
ing x. A summable function f :  Z --* C is an amplitude if for every E, Fe~q/ 

~ve have 

Z I](x)l 2= Z I](x)l 2 < ~  (2.8) 
x e E  x e F  

If f is an amplitude, we define It f 112=~x~E If(x)12 and of course Ilfll is 
independent of E e d .  We denote the set of all amplitudes on X by Jcg(X) 
and call ~,~(X) the amplitude space for X. An amplitude f i s  an amplitude 
density if II f l[ = 1 and we denote the set of all amplitude densities on X by 
~(X).  Of course, iffeJcg(X) with Ilftl S0 then f / l l f l l e~(X) .  Although 
~(X)  is important for computing probabilities, it is sometimes more con- 
venient to consider ~f~(.X) because of its linear structure. Notice that if 
f~@(X), then p(x)=lf(x) l  2 is a probability weight on X. We interpret 
[f(x) ] 2 as the probability that x occurs when tested in the stochastic model 
provided by f. Wesay that p e f t ( d )  is induced if there exists an f eD(X)  
such that p(x)=]f(x)l  2 for every xeX. For the entity (X, ~r Z ( ~ ) )  in 
Example 2.1, every p c ( d )  is induced. Indeed, for a e ~ ,  1], definef^(T)= 
a 1/2, f (U)  = (1 - a)i/z, f (S )  = f ( V )  = 0. Then f ( x  0 =f(x , )  = a 1/2, f(x2) = 
f(xs) = ( 1 -  a) j/2, f(x3)= 0, so the general probability weight is induced by 
f If every p ~ ( d )  is induced, we say that fl(~r is induced. 

Example 2.3 (Little Triangle). Let (X, d )  be the test space with X=  
{x,, xz, x3} and ~r {E, F, G}, where E=  {x~, x2}, F=  {x2, x3}, and G= 
{xl, x3}. The only nonempty support in (X, ~r is S=X, so this test space 
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generates a unique entity (X, d ,  Z), where Z = Z ( d ) =  {S}. There is only 
one p e f t ( d )  and this is given by p(x) = 1/2 for all xeX. Since [x] = ~ for 
all xeX, it is clear that N(X)=  ~ .  Hence, p is not induced. �9 

Example 2.4 (Wedge). Let (X, d , Z ( d ) )  be the entity with X =  
{x, . . . .  ,x7} and d=E,  F, G, H, where E={xj,x2,x3}, F={xbxs,x7}, 
G={x2,xs,x6}, and H={x3,x4,  xs}. Let / l e f~(d)  be defined by 
p (x )=  1/3 for all xeX. It is easy to check that [xs ]=~ .  Hence, f (x s )=0  
for a l l fE~(X).  It follows that/1 is not induced. �9 

Example 2.5 (Wright Triangle). The previous two examples were not 
unital. We now consider the unital entity (X, d ,  E) with X =  { x , , . . . ,  x6}, 

~={E,F,G} 

(where E= {Xl, x2, x3} , F=  {x3, x4, x5}, and G-{xs, x6, Xl}), and 

{s, T, U} 

(where S = {xj, x4}, T= {x2, xs}, U = {x3, x6} ). Let/t ~[~(d) be defined by 
/z (x2) = p (x4) =/z (x6) = 1,/t (x,) = p (x3) =/1 (xs) = 0. Suppose/t is induced by 
fe~(X).  Then 

and 

1 = p  (x2) = I f(x2)12 = If(T)12 

This is a contradiction, so/.t is not induced. 

0 =#  (xs) = I f(xs)12 = If(T)12 

3. I N T E R F E R E N C E  A N D  I N D E P E N D E N C E  

For E~d we define the E-Hilbert space 

a~E=I2(E)={g:E ~ C: ~ 'g(x)'2<oo} 
x ~ E  

Of course, addition and scalar multiplication in ~ e  are defined pointwise 
and the inner product is given by 

(g, h)e = Z g(x)h(x) 
x ~ E  

I f f e ~ ( X ) ,  Eed,  we define the ( E, f )-wave function fe by fe=fl E. Thus, 
fe: E ~ C withfe(x) =f (x)  for all xeE. Notice that f ee  J f e  and the 12-norm 
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ltfg[l~ equals Itfll- Moreover, i f f e ~ ( X ) ,  then Ilfglt~=l.  For  Aeg(d ) ,  
xeX, fe,,~ff(X), we define 

f(A)(x) = Z  {U(S) : S ~  [x] A [A]} (3.1) 

It follows from (2.5) that f (A)(x)  exists. If  xeE, A~F, E, F e d ,  we can 
rewrite (3.1) as 

f(A)(x) = Z { f (S )  : S n E= x, S c~ F~_A} (3.2) 

and the expression in (3.2) is independent of the tests containing x and A. 
Notice that for F e d ,  we have f(F)(x)=f(x).  If  fe@(X) ,  we interpret 
f(A)(x) as the amplitude that A and x both occur. For E e d ,  f e~(X) ,  
A e g ( d ) ,  we define the (E,f)-pseudoprobability of A by 

Pg, j-(A) = E If(A)(x)i 2 (3.3) 
x ~ E  

It is clear that PE.f(A)>0 and PE, f(F) = 1 for all F e d .  
In general, PE#(A) cannot be interpreted as a probability, since it can 

be larger than 1 and need not be additive on g(F) ,  F e d .  If  xsE, A~_E, 
then applying (3.2) with F =  E gives 

f(A)(x) =ZAf(x) 

Hence, in this case, we have 

Pe, r(A) = ~ ZA(x)If(x)12 = Z If(x)12 = Z IfE(x)l" 
x a E  x ~ A  x ~ A  

We conclude that PE,.r is a probability measure on d ( E )  and we call 
PE, fl 8(E) the f-distribution of E. We say that E does not interfere with F 
relative to f if Pe, s(A)=PF4(A) for every Aeg(F). We interpret this as 
saying that if E is used to test Fevents, then the same distribution is obtained 
as when F itself is employed. In this case E contains complete statistical 
information concerning F in the model provided by f Moreover, PE, f gives 
a probability measure on g (F)  as well as on g(E).  Example 4.1 will show 
that noninterference is not a symmetric relation in general. 

In traditional probability theory there is never interference between 
tests. For simplicity, let (f~, ~ , / 1 )  be a finite probability space and let 
E: ~ -) ~ be a random variable. If A e ~  and x is in the range of E, then 
the probability that A and x occur is 

e(A, x) n E-'(x)] 

In analogy with (3.3), we would have 

PE, u (A) =Y. u[A c~ E- ' (x) ]  =u(A)  
x 
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Hence, if F is another random variable, we would have Pe, u(A)= PF, u(A) 
for all A e ~' .  

There is another important case in which we have no interference. A 
support S is called dispersion-free if IS n El = 1 for every E e d .  We denote 
the set of dispersion-free supports by Za. For example, T, and U in Example 
2.1 are dispersion-free and S, T, U in Example 2.5 are dispersion-free. We 
call f e ~ ( X )  dispersion-free if there exists an SeEd n Z such that f ( S )=  1, 
f ( T ) = O  for TeE, T#S. Then for xeX, A e # ( d )  we have 

/(a4)(X) ~ ~l  if x~S ,  s ( ~ a ~  

(0 otherwise 

If  E ~ d ,  we obtain 

Pe,:(A) = ~ If(A)(x)12 = If(A)(y)12 
xEE 

where y = S n E. Hence, 

{10 if S n A # O  
Pe,/(A) = otherwise 

It follows that any two tests do not interfere relative to a dispersion-free 
density. 

Let B ~ E e d ,  f e~ (X) ,  and suppose A e # ( d )  with O<Pe,y(A)< oo. 
We then define the conditional probability 

ExoB I f(A)(x) 12 
PE, y(BIA) - 

Pe,:(A) 
(3.4) 

Notice that Pc, y(" IA) is a probability measure on #(E).  If  A ___E, then 
(3.4) reduces to 

e ,:(sl A) n A) (3.5) 
Pc./(A) 

and (3.5) is the usual form for a conditional probability. Moreover, if 
A =Fe~r  then (3.4) becomes 

PE, f(BIF) = Pe,:(B) 

We say that E is independent o fF  relative to f if Pe, f(BIA)= PE,.r(B) when- 
ever 0 < Pc, f (A)< oo for every B___ E, A ___ F. It follows that E is independent 



Amplitndes on Entities 473 

of F relative to f if and only if for every B ~ E, A ~_ F with 0 < Pe,s(A) < oo 
we have 

)-', If(A)(x)12 = Pe, s(B)PE.f(`4) (3.6) 
X E B  

For example, l e t f e ~ ( X )  be dispersion-free with f (S)= 1. Then both sides 
of  (3.6) equal 1 if S c ~ B # ~  and Sc~A#f~ and they equal 0 otherwise. 
Hence, any two tests are independent relative to f. Notice that in general, 
both sides of  (3.6) agree if ,4 or B is not proper. 

Example 3.1 (Firefly). Let (X, ~r be the entity with X =  
{x,, x2, x3, x,}, d = {E, F} (where E =  {xl, x2} and F =  {x3, x4}, and E = 
{S, T, U, V} (where S = { x , , x , } ,  T={x2,x4}, U={x, ,x3} ,  and V= 
{x2, x3} ). If f ~ ( S )  and f (S)=a,  f (T)=b,  f (U)= c, f (V)=d,  we have 

f(x,)=a+c, f(x2)=b+d, f(x3)=c+d, f(x4)=a+b. Of course, since 
f ~ ( X ) ,  we have 

l a + c ] 2 + l b + d [  2 = l c + d l 2 + l a + b l  2=1 

Moreover, f({x3} )(x,) = c, f({x3} )(x2) = d, f({x4} )(xl) = a, f({x4} ) (x2)  = b. 
Hence, 

eE, f({x3} ) = [c 12+ Idl 2 

eE.f({x4)) = lal2+ Ibl 2 

It follows that E does not interfere with F relative to f if and only if 

Icl2+ldlZ=tc+d]% la]2+lbl2=la+bl 2. 

Moreover, E is independent of  F relative to f if and only if 

Icl2=la+ cl2[IclZ + ldl 2] 

lal z-- l a+  cl2[la[2 + Ibl 2] 

Idl2=lb + dl2[lcl2 + ldl 2] 

ib 12= Ib+dl2[lal2+ Ibl 2] 

Let)q:  E ~ C be defined by a =  1, b=c=d=O. Since S is dispersion-free, so 
is J] .  It follows that E and F do not interfere and are independent relative 
to ~ .  Let f2: X --. C be defined by a = b = c = - d =  1/2. It is easy to check 
that.A ~ ~ ( X )  and E interferes with F relative to j~. Moreover, 

Icl2:�88162189 +ldl 2] 
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so E is not independent of  F relative to J~. Finally, let fa: X ~ C be defined 
by a=d= i/x/l-O, b = c=2/x/q-O. It is easy to check t h a t ~ e ~ ( X )  and E does 
not interfere with F relative to 3~. Moreover, 

C 2 2 1 I I =~=la+cl2[Icl2+ldl 2] 
so E is not independent of  F relative to f3. �9 

Example 3.2 (Hilbertian Entity). This example corresponds to the tradi- 
tional Hilbert space formulation of  quantum mechanics. Let oct ~ be a complex 
Hilbert space. From each 1-dimensional subspace of ~ choose precisely one 
unit vector and let X be the set of  all these unit vectors. Let d be the 
collection of all maximal orthogonal sets in X and form the test space (X, ~r 
For xeX, let Sx = {y~X: (x, y) SO) and let E = {S~: xeX}. For xeX, define 
p x : X ~  [0, 1] by I~:,(y)=l(x,y)l 2. Then px~f~ (d )  and Sx=supp~x. 
Applying Lemma 2.2, we have that S~eZ(~r for all xeX. It follows that 
(X, d ,  E) is a unital entity. For xeX, define f~: E ~ C byf~(Sy)= (x, y). 
This is well-defined, since Sy~S~ i f y ~ z ;  that is, y ~ Sy is a bijection from 
X to E. Notice that Sx---[y] if and only if x=y. Hence, 

fx(Y) = E  {A(Sz): Sz___ [y]} =f,~(Sy) = (X, y) (3.7) 

and for E e d  we have 

Ifx(Y)l 2= E I(x,y)l 2--1 
yeE  y~E 

It follows that f ~ @ ( X )  for all xEX andf~(Sx) = 1. Moreover, if dim oeg > 3, 
then f~ is essentially the only amplitude density with this pwperty.  Indeed, 
suppose f~@(X) and f(Sx)  = 1. Then, as in (3.7), f(Sy)=f(y).  It follows 
from the proof  of Gleason's theorem (Gleason, 1957) that there exists a 
unique positive trace class operator T of  trace 1 on ~ such that If(y) 12 = 
(Ty, y) for all y~X. Moreover, s i n c e f ( x ) =  1, we conclude that T is the l- 
dimensional projection onto the span of  x. Hence, If(y)I ~= I(x, y)I :, so 
there exists a function ~b: X ---, ~ such that 

f(Sy) = f ( y )  = e i~'ty)(x, y) 

for all yEX. Thus, to within a multiplicative phase factor, f~ is unique. 
If Aeg(,~r then S.~_[A] if and only if z is in the closed span ~ A .  

Moreover, ~ _  [y] ^ [A] if and only if z =ye~pp A. It follows that 

f~(A)(y) =~] { f,r : Sz~_[y] n [A]} 

=~(x ,  y) ify~g-~pA (3.8) 

l0 otherwise 
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For E e d ,  we then have 

Pe~(A) = E I]~(A)(y)I2=Y~ {I(x,y)I2: yeEnFpp A} 
xEE 

(3.9) 

If Aeg(F), then, by (3.9), Pe,z,(A)= PF.S,(A) if and only if 

Z {I(x,Y>I2:yeEn~A} = Y~ I (x ,y ) l  2 
yEA 

(3.10) 

Suppose E does not interfere with F relative to fx. Then, letting A = {z} in 
(3.10) with zeF, we conclude that if (x, z ) ~ 0 ,  then z~E. It follows that E 
does not interfere with F relative to i l  if and only if Sx n F _  E. The exchange 
condition then implies that F does not interfere with E relative to f t .  
If Sx n F=F (when o~ is separable there are many x satisfying this), 
then E= F. 

In traditional Hilbert space quantum mechanics, events are usually 
described by orthogonal projections. Such a description can also be given in 
the present framework. If M is an orthogonal projection, let A ___X be an 
orthonormal basis for the range of M. Then A e g ( d ) .  Although A is not 
unique, as we shall see, the amplitude and probability formulas are inde- 
pendent of the A that is chosen. Conversely, if A e S ( d ) ,  then there is a 
unique orthogonal projection MA whose range is g-PP A. For anorthogonal 
projection M and a corresponding A, we define the amplitudef~(M)(y)= 
fi(A)(y). Then, by (3.8), 

].~(M)(y)=~(x,y) if My=y (3.11) 
l0 otherwise 

and (3.11) is independent of the choice of A. Moreover, defining Pe.A(M) = 
Pe.f~(A), we have from (3.9) 

PE&(M) = Z  {I (x, y)12: yeE, My=y} (3.12) 

Again, (3.12) is independent of the chosen A. If M is a 1-dimensional projec- 
tion, then there exists a unique yeX such that My=y. Then (3.7) gives 
f~(M) = (x, y).  In general, Pe.s~ is not a probability measure on the lattice 
of orthogonal projections, although 0 < Pe,f,(M)< 1 and Pe.~,(I)= 1. How- 
ever, if there exists an A eg (E)  corresponding to M, we then have 

Pe,~(M) = Z ](x,Y)[2=( Mx, x) (3.13) 
yeA  
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DenotinK the Boolean o--algebra of orthogonal projections with this prop- 
ertyAby ~(E), we conclude from (3.13) that Pe.f~ is a probability measure 
on r  Of course, (3.13) is the usual quantum mechanical formula. 

Having noticed the correspondence between events and projections, we 
see that tests correspond to the usual quantum observables. For example, 
suppose an observable tP corresponds to a self-adjoint operator T with pure 
point spectrum {~ .1 ,~ , . . . } .  Then by the spectral theorem, we have 
T=Y. AiPj, where {Pi: i=  1, 2 . . . .  } is a unique set of  mutually orthogonal 
projections such that Y. Pi=I. Let E be a test such that P~x=x or P~x=O 
for all xeE,  i=  1, 2 . . . . .  Then the range of each P; is an event for E. Now 
each time �9 is measured, one of the A~ is obtained. Since each ,~i corresponds 
to a unique P~, we can identify the outcomes of tP with events of  E. If  the 
eigenvalues of T are nondegenerate, we can identify the outcomes of t9 with 
the outcomes of E. �9 

This last example shows that entities give a generalization of traditional 
Hilbert space quantum mechanics. For a discussion of  the entity generaliza- 
tion of  classical mechanics, see Bennett and Foulis (to appear). An entity 
X = ( X ,  d ,  E) is an H-entity if for every x e X  there exists a unique SxeE 
such that Sx~_ [x]. An H-entity is injective if the map x ~ Sx is injective. 
Notice that the Hilbertian entities of Example 3.2 are injective H-entities. 
Examples 2.1, 2.3, and 2.4 are not H-entities. Example 2.5 is an H-entity 
that is not injective. Example 3.1 is not an H-entity; however, if we replace 
E by E ' =  {S, V}, then we obtain a noninjective H-entity. Notice that an H- 
entity X has a rich supply of states (X must be unital), yet the states are 
limited, since there is only one state that guarantees each outcome. In 
general, if ( X , d , X )  is unital, there may not exist a E'___Z such that 
(X ,d ,  Z') is an H-entity. 

Example 3.3. Let X = (X, d ,  E) be the entity with X = {x j, x2, x3 }, d = 
{E, F} (where E =  {x~, x2} and F =  {x3} ), and Y. = {S, T} (where S = {xj, x3} 
and T=  {x2, x3} ). Then X is unital. However, X is not an H-entity, since 
S, T both guarantee x3. We cannot delete S or T from E, since this would 
no longer give an entity. (Even if it were, it would not be unital and hence 
not an H-entity.) [] 

For f e ~ ( X ) ,  E e d ,  define 

es= r 
The next result characterizes noninterference for H-entities. 

Theorem 3.1. If X is an H-entity, then E does not interfere with F 
relative to f if and only if there exists a bijection ~: F / ~  Ey such that 
Sy = Sr ~ for every y e F  I. 
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Proof. Suppose there exists a bijection ~b with the given properties and 
let gt = ~b- 1. Then for every xeEy we have 

](x) =f(S~) = f ( Sv,(x)) =](~r 

For A ___ F we have 

=z , _Exl ^ t j} ={o 
if S~nFc_A 

otherwise 

Hence, 

Pc,I(A) = Z I)~(A)(x) I z =•  {If(Sx)12: xeE, Sx n Fc_A} 
x~.E 

=•  {If(x)12: xeEf, S~ n re_A} 

= E  {tf(V(x))12: V(x) eFf, S~,(~) n F~_A} 

= ~ {I.[(Y)12:yeFj, &, n Fc_A} 

= ~  {If(Y)12: yeFj~ A} = ~ If(Y)12= PF, S(A) 
y~A 

We conclude that E does not interfere with F relative to f 
Conversely, suppose E does not interfere with F relative t o f  Then for 

every yeF we have 

E {Is~(x)i z: xeE, Sx=Sy} =•  {If(&)12: xeE, S,,=Sy} 

= E Z {]f(S)l 2: S~_[x]^[y]} 
x E E  

= E If({Y} )(x)12 = Pc,f ({Y}) 
x E E  

= Pr, I ( {Y}  ) = I.f(Y)12 

Thus, if f (y ) r  there exists xeE such that Sx = Sy. This x is unique, since 
if x'e E satisfies Sx, = &,, then S~, = Sx, which implies x'= x. Let 4~ (y) be the 
unique xeE such that Sx=Sy. Then q~ is a map from F s into E. Now 
~b: F i -~ E is injective, since ~b(y)=q)(y') implies the existence of an xeE 
such that Sy = Sx = Sy. Moreover, ~b (y) eE  s for yeFf since 

j?(~b (y)) =f(Soo,)) =f(&,) =)?(y) 4:0 
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We now show that $: Ff --} Ef is surjective. Suppose there exists an x'EE/ 
such that x'r (Ey). Then 

1= ~ If(y)12=y. {If(~(y))12: q~(y)e~b(Ff)} 
y~ Ff 

= X I?(x)l X I?(x)l 1 
x~r xee: 

This is a contradiction. Hence, ~b: Ff ~ E I is bijective. �9 

Corollary 3.2. In an H-entity, E does not interfere with F relative t o f  
if and only if F does not interfere with E relative to f 

Corollary 3.3. In an injective H-entity, E does not interfere with F 
relative to f if and only if Ef= Ff. 

Proof If EI= Fy, then letting r F I ~ E I be the identity function, we 
conclude from Theorem 3.1 that E does not interfere with F relative to f 
Conversely, if E does not interfere with F relative to f, then applying 
Theorem 3.1, we see that there exists a bijection r F I ~ E I such that Sy = 
S~o, ) for all yEE:. Since X is injective, ~b(y)=y, so ~b is the identity map 
and Ef= Ff . �9 

4. COMBINATION OF ENTITIES 

This section considers various ways in which entities can be combined 
and studies their amplitude spaces. Let X~, )(2 be nonempty sets and let 
~r 5cA}, d 2 = { B r :  ) 'eF} be collections of subsets of X~, )(2, 
respectively. We denote the disjoint union of X~ and )(2 by X~ wX2. We use 
the notation 

,-~/1Vd2= {Aa, Br: SeA, yeF}  

:gl ^ d 2 = { A a w  Br: 5sA, ) 'eF} 

Of course, d~ v d 2  and d l ^  d~2 are collections of subsets ofX~ wX2. Now 
suppose XI = (Xi, ~r El) and X2 = (X2, d2 ,  E2) are entities. We define the 
horizontal sum of Xt, X2 by 

XI ~ - X 2 : ( X l  t,z) X2, ~1  v d~2, ~1 ^ ~2) 
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and the direct sum of X~, Xz by 

X I I ~ X  2 = (X!  k=./X2, d~ I A .5~2, E l v E2) 

It is straightforward to check that X~ +)(2 and X~ ~ X 2  are entities. Exten- 
sions to horizontal and direct sum with an arbitrary number of summands 
is routine. An entity is classical if it has only one test. An entity is semi- 
classical if it is a horizontal sum of classical entities. 

Example 4.1 (Spin Chain). Let X)=(X1,  ~/1, }"~1) be the entity with 
Xl={u,d}, ~r and Y.,={{u}, {d}}. The classical entity X, 
describes a single spin-l/2 measurement, where u stands for up and d for 
down. Suppose a spin-l/2 particle initially has spin up and we then perform 
spin measurements at one time unit and at two time units. This can be 
described by the semiclassical entity X = X0 + Xj + XI, where X0 is the singu- 
lar entity X0 = {u}. We can then write X=(X, d ,  E), where 

x =  {uo, u,, d,, u2, a2} 

d =  {Eo, U,, e~}. Eo= {.o}, E, = {u,, d,), E~= {u~, d~} 

E= {{.o, ,,,, u2), {.o, u,, d~}, {Uo, dl, u2}, {uo, d,, d2}} 

Thus, the subscript designates the time at which the measurement is made. 
If S e e ,  let n(S) be the number of successive spin changes. For example, 
n({uo, u,, d2} ) = 1, n({uo, d,,  u2} ) =2. Define f :  E --+ C by f (S)  =i"(s~/2, 
i = ~/z-~. Then 

A 1 1 
f ( u o ) = ~  Y', i'(s)=-~(l+2i+i2)=i 

S~Z 

^ 1 S=_[u~l}=~(l+i ) f(u,) =~  2 { i"{s): 

1 2 1 f(d,)=~(i+i )=~( - l+i )  

1 
)7(u2) =~  (1 + i  2) =0  

~(a~) =~ (20 = i 
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It follows that fE~(X) .  We now consider interference between El and E2. 
We have 

aT({U2} )(Ul) =f({u0, U,, U2} ) = 1  
2 

! 
]({u2} )(d , )=f({uo,  d,, u2} ) = - ' -  

2 

]({d2} )(u,) =f({uo, ul, d2} ) = 2  

]({d2} )(d,) =f({uo, d,, d2} ) = ~  

Hence, 

1 
ee,,f({u2} ) = 7 r  = Pe2,f({u2} ) 

1 
Pe,,f({d2} ) = ~  r 1 = P,r~,f({d2} ) 

so a spin test at time 1 interferes with a spin test at time 2. Moreover 

1 i 

d,} )(u2) 2' d, } )(d2) 2 

Hence, 

PE:,/({di} )=~=Pe,,/({d,} ) 

so a spin test at time 2 does not interfere with a spin test at time 1. This 
shows that noninterference is not a symmetric relation. 

One can make a similar analysis for longer spin-1/2 chains. If measure- 
ments are performed at times 0, 1, 2 . . . . .  m, we construct the entity X =  
X 0 + X I + ' ' '  +X~, where X1 is repeated m times. In this case, we define 
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f (S)  = i"(s)/2 '~/2. It can then be shown t h a t f E ~ ( X ) .  Notice that in all these 
cases 

Is~f(S)  = 1 (4.1) If(u0) l = 

One can also describe other repeated measurements such as higher spin 
measurements in this way. Of  course, in such cases the definition of  f would 
be more complicated. �9 

We now show how to combine amplitudes of the summands to obtain 
amplitudes for the horizontal and direct sums. First consider a horizontal 
sum X = X, + X2. Suppose f~ ~ ~,~ff(X~), f2 6 ~r satisfy 

(a) ~ j~(S,), Y~ f2($2) converge absolutely 
SIEZ1 S2EZ2 

(b) E f~(St)= Z f 2 ( $ 2 ) = c - # 0  
SleEt $2~E2 

(c) I] f ,  [1 = i] f2 tl :# 0 

Letting cj = Z s, ~x, J~ (St) and c2 = Y, s2~2 f2(Sz), we have ] ct [ = I cz I = e. Then 
define J] o~ :  Zt ^E2 - ,  C by 

( f ,  o f~)(st w s2) =f ,(s t) f~(s2)/c  

Let x~X and suppose x~Xt. Then 

(f t  of2)^(x) = X  {J] oA(St wS2): S, wS2~_[x]} 

= l - E  {A(s,)f~(s2): st ___ [x], s~Ex~} 
c 

=L Z A(s2) Z f l (S , )=~2], (x)  
C S2eZ2 S1 ~[x] C 

For any E t ~ M j ,  we have 

X I{Ao ^ 2= = f2) (x)l Y'. I f t (x ) l  = IIAII 2 
xEEI xEE1 

Similarly, if x6X2, then (j~ of2)^(x)=clf2(x)/c and for any E 2 ~ 2 ,  we 
have 

Y~ ](f~ ~  2 =  X IJ~2(x)12=llf2ll 2 
x~E2 xEE2 

we conclude that ~ of 2e~(X)  and that [] j~ of 211 = I[ ft I] = ]t f21]. Moreover, 
ifj~ e@(Xl),f2e@(X2), thenft  o f  2e@(X). 
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It is certainly true that (b) and (c) are strong conditions that greatly 
restrict the amplitudes that can be combined in this manner. However, there 
are amplitudes that satisfy these conditions. For example, suppose X~ =)(2 
and )q =3% satisfy (a). As another example, suppose Xi, jS~(Xi ) ,  i= 1, 2, 
describe spin chains as in Example 4.1. Then (a) is satisfied, IIA II = IPAtl = 
1, and, by (4.1), we see that (b) is satisfied with c = 1. 

We next study independence and interference in X=X~ +X2. Suppose 
fle-~(Xl) a n d j ~ ( X 2 )  satisfy (a) and (b) with c= 1. We have shown that 
f= f l  o f  2e~(X).  Then for A eo~(d2) and x~Xi,  we have 

f (A)  (x) = Z { f (  Sl w &)" $1 u & =_ [x] ~ [A] } 

= ~'. { f,(S,)f2(S2) : S, ~[x], $2_~ [A]} 

= E { j5 (s,): s, __ Ix]} Z { A(s2): & =_ [A[} 

=~(x)  y, {f2(&):S2~_[A]} (4.2) 

If E E d l ,  then applying (4.2) gives 

Pe's(A) = x~eE If(A)(x)12 = E { f2($2) : $2 ~_ [A]} (4.3) 

Now let B~_E and A___Fed2. Applying (4.2) and (4.3), we have 

IA(x) l Z 2 y~ IjT(A)(x)12= • ^ 2 {A(&): S2___[A]} 
x E B  x ~ B  

= Pe, f(B)PE.f(A) 

We conclude from (3.6) that E and F are independent relative to f. Hence, 
any test in d~ is independent of any test in d2  (and conversely) relative 
tof .  This is not surprising, s incefhas the form f = f l  oJ~. 

We now consider interference. It follows from (4.3) that Pe.y(A)= 
Pc, y(A) for every E, G ~ d j ,  Ae~(~r Again, for A _~F~r it easily fol- 
lows that 

Pv, y(A) = E If(A)(x)12= • I)~2(x)]2 (4.4) 
x ~ F  xe ,4  

Now (4.3) and (4.4) certainly look different. In fact, we shall see in Example 
4.2 that there can exist an fz e~(X2) such that Pe#(A)4: Pv, y(A). Hence, for 
such an f, every EE~r interferes with every Fe~'2. This is related to the 
EPR problem. The systems XI and )(2 are separated in the sense that the 
tests in X~ cannot communicate with the tests in )(2. However, the states can 
"communicate," so we have interference of tests. Thus, we have noniocality. 
This also shows that there are independent tests that interfere. Combining 
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this observation with Example 3.1 shows that there is no relationship 
between independence and noninterference. That is, each of the four combi- 
nations of independence/dependence and interference/noninterference is 
possible. 

Example 4.2. Let (X2, ~r be the classical entity with X2 = 
{xi, x2, x3) , d2~2 ~-~- {X2} , and E2 = {S, T, U}, where S=  {x~}, T= {x2}, and 
U={x3}. Define f2:Z2 --, C by f i ( S ) = 1 / 3 + i , / 3 ,  f2(T)~l/3-i , , /3,  and 

J~(U)=I /3 .  Then f2(x0=A(S) ,  A(x2)=A(T), and fi(x3)=f(U), so 
f 2 ~ ( X 2 ) .  Letting A = {x~, x2} eg (d2) ,  we have 

IE {A(S2)" S2~[A]} 12= 14--J-/+ 1 i 2 4 8 

1 i 2 1___(_/2 

We conclude that (4.3) and (4.4) do not agree, in general. �9 

Let X = X~ + X2. We now characterize thosef~ Yg(X) that have the form 
f = f i  of2,fi ~ ( X l ) ,  andf2eYt~(X2). We say that feYg(X) isfactorizable if 

(d) ~" f (S )=dSO converges absolutely 
SeE 

(e) if f ' (S,)  = • f ( s ,  w $2), S,  ~z, ,  
$ 2 ~ 2  

then f ' ( S i ) - O  implies f(Sl~;S2)=Oforall $2~Z2 

if) f(S~ wS2)/f'(Sj) depends only on $2 whenever f ' (SOSO 

Theorem 4.1. Let f s ~ ( X )  with tt fit S0. Then there exist fl E~(X~) 
and f~ e Yg(X2) such that f=f~ o f2 if and only i f f  is factorizable. 

Proof Suppose f=f l  o f  2. Then f l ,  f2 satisfy (a)-(c) and f(Si w $2) = 
fi(SOf2(S2). We then have 

Z f ( S )  = Z j~(S,) Z A($2)=0c2 sO 
SeE $1 ~EI $2~Z2 

and the series converges absolutely, so (d) holds. Since f ' ( S 0  = c2fl(Sj), if 
f ' (Sj) = 0, thenjq (Sl)= 0, sof(S1 w $2)= 0 for every S2eX2. Hence, (e) holds. 
I f f ' ( S 0  S0, then 

f(S,  w $2) _ 1 
f~(s~) 

f ' ( s j )  c2 
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is a function of only $2, so (f) holds. Conversely, suppose fear'(X) is 
factorizable. We first show thatf 'eag '(Xl) .  For xeXt, we have 

f ' (x)= Z f '(S')  = Z Z f(StwS2) 
St ~[x] S, ~[x] $2--.X2 

=Y'. {f(St wS2): S, w $2___ [x]} =](x)  (4.5) 

Hence, for E, F e d t ,  we have 

Z I?'(x)l ~= Z a?(x)l ~= X ff(x)l ~= E I?'(x)l ~ 
x ~ E  x ~ E  x ~ F  xEF 

Since llfll ~0, if follows from (4.5) that there exists an SIeZI such that 
f '(St) #0. Define 

f"(S2) _f(St  u $2) 
f '(St) 

for all S2eX2. By (e), 

f'(S,)f"(S2) =f(S~ ~ $2) (4.6) 

for all St EZj, S2eZ2. Applying (d) and (e), we have 

df"(Sz) = ~, f(S, ~$2) 
Sl E~,l 

As in (4.5), if xeX2, then f"(x)=f(x)/d, so f"eaf(X2). It follows from 
(4.2) that f= f ' o f " .  �9 

Of course, we could interchange the roles of Z~ and Z2 in the defnition 
of factorizability. 

We now consider the direct sum X=X1~X2. Let J]eo~(Xt) and 
f2eo~(X2) and define f = f i  ~f2:  Zl vZ2 ~ C by 

= I f i ( S  ) if SeE, 
f (S)  [f2(S) if SeZ:  

Let xeX and suppose xeXi. Then 

f (x)  = ~, f ( S ) = Y  ', {J~(SI): Sle]~'q, SI ~_.[x]} = f l ( x )  
s=-[xl 

Similarly, if xeX2,f(x) =~(x).  Hence, for E=EI w E 2 e d t  ^ ~r we have 

Y, Ihx)l 2= Z ff(x)l 2+ Z I~(x)l ~ 
xEE xeE1 x~E2 

= Z ]f|(X) l 2+ Z ]~(X) 12=l]/I]l 2+ IIAII 2 
xEEI x~E2 
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We conclude t ha t f e  ~ ( X )  and II f H 2 = II f~ II = + II ~ II 2. Moreover, iffi e ~(Xi) ,  
f i e~(X2) ,  and a, b~C satisfy JalZ+ IbJ 2= 1, then aft ~b f ie~(X) .  

We now discuss interference and independence. Let 

A =AI wA2~g(d~  ^ ~'2) 

f=af l@bf2,  fie@(Xi), i=  1, 2, lalZ+ Ibl 2-- 1. IfxEX~, then 

f (A)(x)  = Z { f ( S ) :  S~_[x] ^ [A]} 

=Z (af,(S,): S, eZ,, S, _~[x] ^ [A,]} 

=af,(A,)(x) 

Similarly, if xeX2, then ](A)(X) = b]'E(Az)(x). For E =  Ej w E2e~r ^ ~r 
we have 

P ,AA)= E I f (A)(x) l  
x EE  

=la l  2 E I]~(A,)(x)12+lbl 2 Z If2(A2)(x)l 2 
xeE1 x~E2 

= l a 12ee,.f,(A ~) + I b I2Pe=.f~(A2) (4.7) 

This shows that the distribution of E relative to f is a convex combination 
of the distribution of El relative to fi and that of  E2 relative t o i l .  Let F =  
F~ w F2e~r ^ d 2 .  It follows from (4.7) that if El does not interfere with Fi 
relative to f,-, i = 1, 2, then E does not interfere with F relative to f Let B = 
BI w B2e~(E), AEo~(F). Then 

Z [f(A)(x)12=la[ 2 Z [f~(A,)(x)12+lb[ 2 ~ [f2(A2)(x)l 2 (4.8) 
xEB  x~BI xEB2 

while 

Pe.f(B)P~.f(A) = [I a 12Pe,.f,(B,) +lb  I2Pe2.A(B2)] 

x Ibl2ee2./:(A2)] (4.9) 

If Ei is independent of F~ relative to fi, i=  1, 2, then (4.8) gives 

I.f(A)(x) 12= la[2ee,,f,(Al)Pe,.ft(B,) +tbi2PE2.f2(A2)Pe2,f2(B2) (4.10) 
xEB 

In general, (4.9) and (4.10) do not coincide unless ab=O. Thus, even in 
the case of componentwise independence, E and F are not independent in 
general. 

The next result characterizes amplitude density direct sums. 
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Theorem 4.2. Let X=XI@X2 and feN(X) and assume N(XI), 
N (X2) r ~ .  Then there exist f- ~ ~ (X~), i = 1, 2, and a, b e 12 with I a 12 + I b 12 = 
1 such thatf=afl~bf2 if and only if ( 1 ) f ( x ) = O  for every xeXi implies 
f(Si) = 0 for every $1 e Zj,  and (2) f(x) = 0 for every x eX2 implies f(S2) = 0 
for every $2 e E2. 

Proof Suppose feN(X) and f=afj@bf2, ~eN(Xi), i = 1, 2. Assume 
f (x )  = 0 for every xeXi. Then for every xeX1, all(x) = f ( x ) =  0. Since there 
exists an x eX such that f~ (x) r 0, a = 0. Hence, I b I = 1 and f =  0Jq ~bj~.  Then 
for every S~eEi we havef(Sl)=Ofj(S1)=O. Therefore, (1) holds and in a 
similar way (2) holds. Conversely, suppose f e N ( X )  and (1) and (2) hold. 
Now for E=EI wE2eal ^a~_ we have 

1= y' If(x)[ 2= 2 If(x)[ 2+ E If(x)[ 2 
x E E  xf~E1 xEE2 

Define a > 0 by 

a 2 = 1 - E  If(x) l 2 
x ~ E:~ 

for a fixed E2e~r Then for every E, ,  E~'ed,  we have 

x~E[ x ~ E i  

Similarly, there is a b > 0 such that for any E2, E2' e d 2  we have 

Z I-f(x)l == E If(x)l 2=b2 
x~E2 XEE~ 

Then a2+b 2= 1. If  a = 0 ,  t h e n f ( x ) = 0  for every xeXl, s o f ( S 0  =0  for every 
Sj eEj.  Let J] e@(X~) be arbitrary and define f2:E2 --* C by j~(S2) =f(S2). 
To show that f2E@(X2), let xeX2. Then 

fz(x) = ~ j~(S2) = ~ f(S2) = Y. f(S)=f(x) 
S 2 ~_~ [X] $2 ----- Ix] S ~  [x] 

Hence, if E2~d2 ,  we have 

y. i? (x)l 2 
XEE2 xeE2 
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Therefore, J~e~(X2) and f =  0f~ @f2. Similarly, if b = 0, then f=3q OOJ~ for 
somefe~(X, . ) ,  i=  1, 2. Now suppose a, b > 0 .  Definef~ : Z~ ~ C byf~(&) = 
f ( & ) / a  and J~:Z2 ~ C by f2(S2)=f(&)/b. To show that f~e~(X~), let 
xeX~. Then 

f , (x)  = E Jq(S,) = 1  Y~ f ( & ) = l  y. f ( s ) = l ~ ( x )  
s, ~-[xl a s, =-Ix1 a s~-txl a 

Hence, for E~ e d j  we have 

* 2 1 li,(x)l l, (x)t 

Similarly, f2 e~(X2).  Moreover, f =  afj Obf2. [] 

Corollary 4.3. Let fe~(Xl@X2)  and suppose there exist x~eX~ such 
that f (x , )r  i= 1, 2. Then there ex is t fe~(Xi ) ,  i=  1, 2, and a, b e g  with 
la l2+lb[  2= 1 such thatf=a~@bf2. 

Corollary 4.4. Let f eJ f (X l |  and suppose there exist x~Xg such 
thatf(x~) ~0,  i=  1, 2. Then there ex is t f  e ~f(X;), i=  1, 2, such thatf=f~@f2. 

The next result shows that the decomposition f =  ajq @bJ~, for 

fe@(X,@X2) 

is essentially unique. 

Lemma 4.5. Le t J i , f / e~ (X~) ,  i = 1, 2, and suppose 

af,| 

where a, b~0 .  Then there exist c, d e c  with I c t = l d l  = 1 such that J~ =c f [ ,  
f~ = dfj, and a' = ac, b' = bd. 

Proof. Since af~(&)=a~'(&) for every S~eE~, we have 

a '  

f l ( S , )  = - - f ( ( S , )  
a 

Hence, ~(x )=a~ ' (x ) /a  for all xeX~. Moreover, for for every & e E l .  
Ej e d ~ ,  we have 

2 2 

, =  z z 
x~Ei xEEI 

Letting c-- a'/a, we have j] = c)q' and a' = ac. A similar result holds for f2. [] 

We now give an example of  anfe~(X~OX2) which is not of the form 
f=af~Obf2, f e ~ ( X i ) ,  i = 1, 2. 
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Example 4.3. Let (Xt, zgt, X,) be the semiclassical entity given by X~ = 
{x,, x2, x3, x4}, M'l = {El, Ft} (where El = {Xl, x2} and Fl = {x3, x4}, and 
Z~ = {S~, $2, $3, $4} (where S~ = {x,, x3}, S, = {x,, x4}, $3 = {x2, x4}, and 
$4 = {x2, x3} ). Let X2 be the singular entity X2 = {xs}, sr = {E2}, Z2 = {$5}, 
and E2=$5 = {x5}. Define f :  El rE2 by 

f(S,) = -f (S=)  =f(S3)  = - f (S4)  =f (Ss )  = 1 

Thenfe~(X~X2).  Indeed, f ( x s ) =  1 a n d f ( x i ) = 0 ,  i=  1, 2, 3, 4. Hence, for 
E =  El w E2 and F = Fl w Fz we have 

Ij~(x) 12 = ~, I f (x) l  2 = 1 
x E E  x ~ F  

Now f ( x ) = 0  for every xeXl, yet f ( S )#O for SeXl.  By Theorem 4.2, 
f#aft~bf2 f o r f e ~ ( X i ) ,  i = 1, 2. �9 

If  A and B are sets, we denote their Cartesian product A x B by AB. In 
particular, if A = {a} is a singleton set, we write aB for {a}B and similarly 
we write Ab for A{b}. We denote an element (a, b)eAB by ab. If X =  
(X, d ,  E), Y= (Y, ~, A) are entities, the Cartesian product of  X and Y is 
the entity 

x r =  (xY, d ~ ,  XA) 

where d ~ =  {EF: Eed ,  FeY)} and ZA = {ST: SeE,  TEA}. It is easy to 
check that XY is indeed an entity. For fea~(X), ge~ (Y ) ,  we define 
fg: ZA + C byfg(ST)=f(S)g(T). IfxyeXY, we have 

(fg)^(xY) = E ( fg ) (ST)  = Y', f ( S )  Y'. f ( T ) = f ( x ) ~ ( y )  
S T  ~ -- [xy] S----- [x] T ~  b ']  

We then have for any EFe d ~  

[(fg) ̂  (xy)] 2 = ~ If(x)12 ~, If(Y)12 
x y ~ E F  x e E  y ~ F  

It follows that f g s ~ ( X Y )  and 41fgll = [Ifl l  IIgl l .  In particular, i f f e ~ ( X ) ,  
g e ~ ( Y ) ,  then fge.~(xY). 

If C E S ( d ~ ) ,  then 

(fg) ^ (C)(xy) = s {(fg)(ST): STY_ [xy] A [C]} 

=• {T(S)g(T): S~_[x], T~_[y], ST~_[C]} 
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In particular, if C=AB, A e$'(ag), BeS(~) ,  then 

(fg)^(AB)(xy)=Y. { f (S)g(T):  Sc_[x] ^ [A], T~[y] ^ [B]} 

=f(A)(x)g(B)(y) (4.11) 

If EFeald$, then applying (4.1 l) gives 

Per,/g(AB) = Pe,.f(A)PF, g(B) (4.12) 

Suppose E, E ' e d  and F, F 'e&,  E does not interfere with E', F does not 
interfere with F', and ABeg(E'F'). Then from (4.12) we have 

eeF, fg(AB) = PE,,f(A)Pr,f(B) = PE,r,fg(AB) 

However, every Ceg(E'F') need not be a product event C=AB and in 
general we may have 

PEF, yg( C) ~- PE'F',fg( C) 

SO EF can interfere with E'F' relative tofg. A similar observation holds for 
independence. 

Nevertheless, in a certain sense, anfg e @(XY) does not give interference 
between E e a t  and F e ~ ,  since for A c E ,  

PEF, fg(AF) = Pe,/(A)PeFa(F) = Re,/(A) 

Thus, the presence of F does not affect E. Similarly, if Be_F, then 
PeF, fg(EB) = Pe,~(B), so the presence of E does not affect F. We now give a 
way of combining amplitudes that does allow interference and which also 
describes a temporal structure. Let us view X Y  as an entity in which we first 
execute a test in X and at a later time we execute a test in Y. [A more delicate 
temporal description is given by the forward operational produce (Foulis, 
1989; Foulis and Randall, 1972b).] If SeZ and TeA, we can write ST= 
w,~rSt, which is interpreted as meaning that the first system is in state S 
and later some teTis  possible. F o r f e ~ ( X )  and ge~(Y)  we want to define 
a product f g  so that f g  (ST) is the amplitude that the first system is in state 
S and that, given this fact, the second system is in state T at a later time. 
Heuristically, if we assume an additivity and multiplicative condition, we 
might have 

~ ( S T ) = f g (  {:) St]= ~ fg(St)=cf(S) Y~ g(') (4.13) 
\ t e T  ] t e T  t ~ T  

where c is a normalization constant. Of course, the second and third equali- 
ties in (4.13) are meaningless in the present context. However, the last 
expression in (4.13) does have meaning if the summation converges. 



490 Gudder 

To make this motivation rigorous, we say that f c ~ ( X )  is a strong 
amplitude density if f (S )=~,~s f (S)  converges absolutely for every SeY~ 
a n d f ~ ( X )  with I1JTl[ r  I f f ~ ( X )  is strong, we def inef '  =f/ll f II. Then 
f ' e ~ ( X ) .  Now suppose f e ~ ( X )  and g ~ ( Y ) ,  where g is strong. We then 
define f - g ~ ( X Y )  by f-g=fg'. We then have 

1 
fg(ST) =f(S )g'(r) = [~g][ f ( S  ) ,~T g(t) 

SO ~ satisfies the last equality in (4.13). If  E F ~ d ~  and A B ~ g ( d ~ ) ,  then 
by (4.12) we have 

PeF,~(AB) = Pee, yg,(AB) = Pe, y(A)PF, g,(B) 

In particular, if A ~_ E, then 

PE~,~(AF) = ee, f(A) 

Hence, F does not interfere with E in our previous sense. However, if B~_F, 
then 

PEF,~(EB) = PF, g'(B) 

In general, Pr, g,(B)r g(B), SO E interferes with F in this sense. 
Although strongness is a restriction on an amplitude density, the next 

example shows that in certain cases this is no restriction at all. 

Example 4.4. Let (X, ~r Y~) be the firefly entity of Example 3.1. We 
shall show that everyfE@(X) is strong. Let fE@(X) w i t h f ( S ) = a , f ( T ) =  
b, f (U)=c,  andf(V)=d.  Then, as in Example 3.1, we have 

la+cl2 +lb+dl2=lc+dl2 +[a+bl z= 1 (4.14) 

Now 

and 

f(S) =j~(x,) +j~(x4) = 2a + b + c 

jZ(T) =f (x2)  + f (x4)  = 2b + a + d 

jT(U) =j~(x,) + f (x3)  = 2e + a + d 

f ( V )  = f (x2)  +] (x3)  = 2 d +  b + c 

f ^ (x~)=3(a+c)+b+d 

] '  ^ (x2) = 3(b + d) + a + c 

jT ̂ (x3)= 3( c + d) + a + b 

jT ̂ (x4)= 3(a + b) + c+ d 
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Hence, 

]lJW^ll2e=13(a+c)+b+dl2+13(b+d)+a+cl 2 

Ilf^Llz~=13(c+d)+a+blZ+t3(a+b)+c+dl 2 (4.15) 

N o w y ~ ( X )  if and only if 

Ill  ^ II~ = Ill  ^ 112 (4.16) 

Applying (4.14) and (4.15) gives 

II f ^ Ii ~ = 10 + 12 Re(a + c)(b + d) 

I l l  ^ I1~ = 1 0 +  12 Re(c+d)(a+b) 

Hence, (4.16) holds if and only if 

Re(a + c)(b + d) = Re(c + d)(a + b) (4.17) 

But (4.17) is equivalent to 

Re(ab+ cd) = Re(cfi + d/~) (4.18) 

and (4.14) implies that (4.18) holds. Hence, jz~ovf(X). We must now show 
that Ilfll S0. If It f i t  =0, then by (4.15) we have 

3(a+c)+b+d=3(b+d)+a+c=3(c+d)+a+b=3(a+b)+c+d=O 

But the only solution of these equations is a=b =c=d=O, which 
contradicts (4.14). ! 

We call f e J f ( X Y )  a product amplitude if f=gh for some geoVf(X) and 
heJf(  Y). For f eJ f (XY) ,  SeE, and TeA, define fr(S) =f(ST) and sf( T) = 
f(ST).  The next result characterizes product amplitudes. 

Theorem 4.6. Let feJf(XY).  Thenf is  a product amplitude if and only 
iffTe~Cf(X) and ~feg/f(Y) for every SeE and TeA; and for every S, S 'eZ  
and T, T'eA we have 

f (ST)f(S 'T ' )  =f(ST') f(S 'T)  

Proof Suppose f is a product amplitude and f=gh. Then fr=h(T)g 
and sf=g(S)h are amplitudes and 

f ( ST) f ( S'T') = g( S )h( T)g( S ')h( T') = g( S )h( T')g( S ')h( T) 

=f(ST')f(S'T) 
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Conversely, suppose f satisfies the conditions of  the theorem. If f =  0, then 
c lear lyf is  a product amplitude. Otherwise, there exist S ' eX and T ' e A  such 
thatf(S'T') tO. Then for every S e Z  and TeA we have 

f(ST')f(S'T) 1 
f (ST) -"  f(S'T') - f (S 'T ' )  fr ' (S)s ' f (T) 

Other types of  entity products can be defined. For example, there are 
the forward and backward operational products and the tensor product 
(Foulis, 1989; Gudder, 1988a). However, we have not yet developed a 
definitive amplitude structure for such products, so we shall not pursue them 
here. 

5. S E C T O R S  

Let X = (X, d ,  Z) be an entity. We define a relation s on Jvf(X) by fs  g 
if for every E, Fe~r  we have 

E 37(x)g(x) = E f(x)g(x) (5.1) 
x ~ E  x e F  

We can write (5.1) as ( f ,  ~)E = (37, ff)g and i f f s  g we write ( f ,  g )  = ( f ,  g )e ,  
where E e d  is arbitrary. Notice that i f f sg ,  then afsg for all aeC.  It is 
clear that s is a symmetric, reflexive relation and ( f ,  f )  = II f II 2. However, 
as we shall see, s need not be transitive. We call f e  Jrg(X) a null amplitude if 
II f l[ = 0 and denote the set of  null amplitudes by X ( X ) .  Thus, feJV(X) if 
and only if f - -  0. I f f~  X ( X ) ,  then clearly f s g for all g ~ ~ ( X ) .  I f f e  ~ ( X ) ,  
then of  course af~Jg(X) for all aeC .  However, i f f  g~;,~g(X), we will see 
t h a t f + g  need not be in J r (X) ,  so ~ ( X )  may not be a linear space. In fact, 
Corollary 5.3 will show that af+bgeJ/g(X) for all a, b e C  if and only if 
f s  g. Since af+ bg is an amplitude superposition, s describes a superposition 
relation. 

Example 5.1. Let (X, d , E )  be the entity of  Example 3.3. Define 
f, geN(X) by f (S)~g(T)= 1, and f(T)=g(S)=0. Then f(xO=37(x3) = 
g(x2) =~(x3) = 1 and f(xz) = ~ ( x 0  = 0. Hence, 

so f x g. We n o w s h o w  that h=f  +gq~Yf(X). Indeed, h(S)=h(T)= 1 and 
h(Xl) =h(x2) = 1, h(x3) = 2. Hence, 

Y~ Ih(x)12--24=4 = ~ I/~(x)l 2 
x ~ E  x ~ F  
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Letting u e.lg(X) with u =  0, we have f s  u and u s g, so s is not transitive. 
We now show that A t ( X ) =  {u}. If  veA/'(X), then 

0 = 1 1 o l t  2 ~ 2 = It v l i~  = I ~ ( x , ) i  2 + I ~ ( x 2 ) 1  = = I ~ ( S ) 1 2  + I t3 (T)12  

Hence, v(S)=v(T)=O, so v=u. [] 

Example 5.2. Let (X, d ,  Y.) be the firefly entity of Example 3.1. Define 
f e ~ ( X )  b y f ( S )  = - f ( T )  = - f (U)  = f ( V )  = 1. Thenf i s  not identically zero, 
yet f =  0. Hence, f e  JI/(X). We now show that X ( X ) =  {a f: a e t2 }. Indeed, 
if gsA/ ' (X),  then in the notation of Example 3.1 we have 

a+c=b+d=c+d=a+b=O 

Hence, a = - c  = - b  = d. It follows that g = af [] 

Lemma 5.1. Let f ,  g: 2; --, 12 and a, b e 12. If  f ,  g are summable, then 
af + bg is summable and (af + bg) ̂  = af + b~,. 

Proof Straightforward. 

Theorem 5.2. Let f ,  geJg(X). Then f s g  if and only if f+g,  
f +  igeJg(X). 

Proof Since f, gear(X), by Lemma 5.1, f+g  is summable and for 
every E e d  we have 

E I ( f + g )  ^ (x)12 = E If(x) +~(x)12 
x ~ E  . t e e  

= IIf[12+ Ilg[12+2 Re ~ f(x)~,(x) (5.2) 
x ~ E  

By Schwarz's inequality, the summations in (5.2) are finite. Now i f f s  g, then 
we conclude from (5.2) thatf+geJlo(X). Moreover , fs  (ig), so f +  igeJg(X) 
Conversely, if f +gear(X), then from (5.2) we have 

Re ( f ,  ~>e = R e ( f ,  ~>F 

for all E, F e d .  If, in addition, f +  igeaf(X), then since 

E [(f+ig)^(x)l 2= E [f(x)+ig(x)[ 2 
x e E  x E E  

= I1 f It2 + Ilgll= + 2 I m ( f ,  g>e 

we have 

Im<f,  g>~= Im<f,  g>F 

for all E, F e d .  It follows that fsg.  [] 

Corollary 5.3. For f ,  g e J ~ ( X ) , f s g  if and only if a f+bge~(X)  for 
all a, be(; .  
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For f ,  ge~,~t~(X), we write f,,~g iff-ge.A/'(X). 

Corollary 5.4. (1) The following statements are equivalent. ( a ) f ~ g ,  
(b) f = ~ ,  and ( c ) f sg  andfe=ge for some E ~ r  (2) Jff(X) is a complex 
linear space. (3) ~ is an equivalence relation. 

Proof. (1) To prove (a)=~(b), supposef~g .  By Lemma 5.1, we have 
A A A 

f - ~  = ( f - g )  ^ = 0, s o f  = ~. To prove (b) =~ (c), supposef  = g. Then for every 
EeoC, we have <f, ~>e = Ilfll 2, sofsg.  Moreover, 

fe=flE=~,lE=ge 

To prove (c)=:-(a), suppose (c) holds. Then, by Theorem 5 . 2 , f - g e ~ ( X )  
and 

I t f -g l l - - I I ( f -g )~ l l e  = I lfe-gel l~ =0  

Hence, f ~ g. 
(2) It is clear that 0eJV(X) and if f ,  gz~4r(X), then af+bgeX(X) for 

all a, beC.  
(3) It is clear that ~ is reflexive and symmetric. To prove transitivity, 

s u p p o s e f ~ g  and g~h. Then by Part (2) we have 

f -h=( f -g )+(g-h)E ,Ar (X)  �9 

For A ___~q~(X) we write 

A s= { f E ~ ( X ) : f s  g for all gEA} 

We call A _c ,~ff(X) an s-set if A _ A s. Thus, A is an s-set if and only i f f s  g for 
all f ,  geA. It is clear that singleton sets are s-sets and hence everyfe  ~r is 
contained in an s-set. Moreover, by Zorn's lemma, every s-set is contained 
in a maximal s-set. We denote the collection of maximal s-sets by ~ ( X )  
and we call the elements of J i ( X )  sectors. A sector is a maximal set of 
amplitudes for which superpositions are allowed. They correspond to super- 
selection sectors for a physical system. Let ME~g(X). I f fEM and aEC, 
then afsg for all geM. Since M is maximal, afeM. If  f ,  geM, then by 
Theorem 5.2, f+ge~Cf(X). Also, it is clear that ( f+g)s  h for all heM. 
Again by maximality, f+g~M. Hence, M is a linear space. Moreover, by 
Corollary 5.4, ~4/'(X) is a subspace of M. F o r f E M ,  denote the equivalence 
class f+~4P(X) by I f ]  and define ( [ f ] ,  [g ] )=  ( f ,  g) .  It is straightforward 
to show that this is well-defined and gives an inner product on M/JV(X). 
In the sequel, we shall delete the bracket on [ f ]  and simply denote M~ 
Jff(X) by M. In this way, M becomes an inner product space. We say that 
X=(X, d , Z )  is complete if every Ms.At(X) is a Hilbert space. We shall 
show that if there exists a finite E e d  or if X =  (X, d ,  Z(zr is semiclassical, 
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then X is complete. Moreover, it follows from Theorem 7 of Gudder (1986) 
that if f~(~r is induced, then X is complete. I fX  is complete, ~ ( X )  becomes 
apartial Hilbert space (Gudder, 1986, 1988a). In general, for M~Jg(X) we 
define dim M as the cardinality of any maximal orthonormal set in M. 

We now investigate the sector structure of oeg(X). The simplest case is 
when X is classical and Z = Y=(~r In this case ~ ( X )  can be identified with 
12(X) and Jg(X) is itself the only sector. In general, for M~JI(X)  and 

U ~ �9 U M EEzr define e �9 M ~ 12(E) by e f = f e .  Then Uff is a linear transforma- 
tion and 

(U~f,  Uffg> = ( f ,  g)  

Hence, Uff is a unitary transformation from M into gt~e = 12(E). We thus 
have the following result. 

Lemma 5.5. If  M~JI(X) ,  then dim M<IEI for every EeoC. 

The next result improves Lemma 5.5 for the case of a semiclassical 
entity with a test of smallest cardinality. 

Theorem 5.6. Let X = (X, d ,  E ( d ) )  be semiclassical and suppose E ~ d  
satisfies IE l< lF]  for every F E d .  Then, for every MEJg(X) we have 
dim M =  I EI and M is complete. 

Proof Fix MEJg(X). By Lemma 5.5, dim M< l E[ .  Letting gz, s  
be an orthonormal basis for M, we have [AI<IE].  For F E d ,  let gX,F = 
UF~ga. Then {gx,F : 2EA} is an orthonormal set in ocgF. Since I E[ < [FI, there 
exists a unitary transformation Uv: ~ e  ~ ~r such that Uvga,e = gx,v, ,~eA. 
Hence, gafF= UF Uffga, )~e A. Let ho e ~F~ and define h: X ~ C by h IF = Urho 
for every F E d .  Now g g ( X ) #  {0} since there are dispersion-free amplitude 
densities in ogY(X), for example. Hence, dim M >  1. If  le t  = 1, we are finished, 
so suppose ]El>2.  Since X is semiclassical, for every xEX there exists an 
SxEZ(~r such that S~c_[x] but S,g;[y]  for every yeX  with yv~x. Define 
f : E ( ~ ' )  ~ C as follows. If  xeE, f(S~)=ho(x); if xeF, F#E,  f ( S 0 =  
(Urho)(X); f ( S ) = 0 ,  otherwise. Then f(x)=ho(x) for xeE, and f ( x ) =  
(Urho)(X) for xeF, Fr  Hence, 

Ijr 12 = II Ufho]l 2= IIh0112= E IJT(x) 12 
x ~ F  x ~ E  

We conclude that fEgg(X).  Also, f s  gx, A, EA, since 

It follows that f e M  ~ and since M is maximal, f eM.  Since U~f=ho, 
U~t: M ~ gt?e is surjective. Hence, dim M = IEI and M is complete. [] 
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The center of ~ ( X )  is defined as 

Z[~f~(X)] = { f e ~ f f ( X ) : f s  g for all ge.ge(X)} = ~ ( X )  s 

It is straightforward to show that Z [ ~ ( X ) ]  is a closed subspace of every 
sector. 

Theorem 5. 7. If  Ea_~E, then dim Z [ ~ ( X ) ]  >1 n d I. 

Proof. If  n d =  ~ ,  we are finished. Otherwise, for x E n d,  let Sx = 
{x}. Then clearly SxeEd-----E. Let f x e ~ ( X )  be the corresponding dispersion- 
free amplitude, fx(S~) = 1, f (S)  =0,  SveS~. Then f~(x) = 1 and f~(y) =0,  
yCx. If g~Y/f(X) and E ~ d ,  we have (~ , fx )=~(x) .  Hence, f~sg, so 
f ~ Z [ ~ ( X ) ]  for all x~d.  Moreover, the f~, xe  n d ,  are mutually ortho- 
gonal. Hence, dim Z [ ~ ( X ) ]  >-[ n d [. �9 

For x, y~X we write x l y  if x r  and there exists an EEd such that 
x, y~E.  We say that ~ee(X) is strong if xZy implies that there exists an 
f~@(X) such t h a t j ~ ( x ) = f ( y ) =  1 and if x#y,  x,Ey implies that there exists 
a g ~ ( X )  such that ~(x) -- - ~ ( y )  = 1. 

Example 5.3. Let (X, d ,  Z ( d ) )  be semiclassical with [El >_2 for every 
E~d.  We shall show that ovf(X) is strong. I fxCy and xZy, then there exist 
E, Fed ,  Ev~F, such that x~E and yEF. Hence, there exists an S~Za such 
that Sc_[x] ̂ ~y]. Define f :  Y~ ~ C by f ( S ) =  1 and f ( T ) = 0 ,  T~S. Then 
f~@(X) andf(x)=f(y)= 1. For each z~S there exists S~Y~(d) such that 
S=_~[z] and S~.~[z'], z'r Define g: E ~ C by g(S0 = 1 =-g(Sy) and for 
each G~d select a z~G and let g(S,)= 1. Moreover, let g(S)=0 otherwise. 
Then g~@(X) and g ( x ) = - ~ ( y ) =  1. �9 

Theorem 5.8. If  Ed___E and ore(X) is strong, then 

dim Z[~'f(X)] = [ n d [  

Proof Suppose x~ r i d .  We now show that there is a y r  such that 
y)d_x. Assuming otherwise, we have xA_(X\{x} ). Let E e d  with xq~E. Since 
ogf(X) is strong, there exists a ge~(X) such that g(x) = 1. Since xlE,  g(y) = 
0 for all y~E.  But then [lgl[ =0,  which is a contradiction. Since ovg(X) is 
strong, there exist h, h'E~(X) such that. 

/~(x) =/~(y) = h'(x) = -/~'(y) = 1 

Now letfeZ[J/g(X)]. Since f s  h, we have 

.f(x)fffx)=f(y)f~(y) 

so )?(x) =97(y). Moreover, f s  h', so 

f(x)fz' (x) =f(y)/~'(y) 
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Hence, f ( x ) = - f ( y ) ,  so )?(x)=0 for all xr c~d. If n a ~ r  then f = 0 .  
Otherwise, for x s c~ ~t, construct f: ~ Z[;,ug(X)] as in the proof  of  Theorem 
5.7. Now ~ . . . .  ~, If(z)12< oo and 

Hence, {fz: ze  r i d }  is an orthonormal basis for Z[ J f (X) ] .  We conclude 
that dim Z[Jg(X)]  <]c~ d ]  and the result follows from Theorem 5.7 I 

It is sometimes useful to embed g f ( X )  in a Hilbert space and we now 
give a construction that does this in certain cases. We say that 9f~(X) is 
embeddable if there exists a Hilbert space ~Vo and an injection 
4): ~vg(X) -o Jr0 such that g-pp q~[ocg(X)] = g 0  and ~blM is a linear unitary 
transformation for every MsJ/ (X) .  

Theorem 5.9. If J d l  is countable then ovf(X) is embeddable. 

Proof Let 5~(E) be the set of  summable functions on Y~. Then 6~(E) is 
a complex linear space under pointwise addition and scalar multiplication 
and the set of  null amplitudes X ( X )  is a linear subspace of  ffa(y~). Letting 
~(E)=ff~(Z,)/JV'(X), we have ~r  Let d = {El, E2 . . . .  } and 
let a; > 0 satisfy ~ at = 1. (If I J  I = n < oo, then let i = 1 . . . . .  n; otherwise, i = 
1, Z .  �9 �9 -) Let 

J f = { f ~ S f ( Z )  �9 a, ~] ,f(x)12+a2 Y, , j T ( x ) 1 2 + ' " <  Go} 
x~EI .,:~E2 

For f, g e J f ,  define 

( f ,  g ) o = Z  al Z f(x)~(x) 
x ~ E i  

This exists and is finite, since, letting 

b i =  I?(X) 12 , Ci = Ig(x) 12 '~ |/2 
x E E  i -'r i 

we have by Schwarz's inequality 

](f,g)o[<Ya, ~ [)?(x)[[~(x)] 
x ~  g i 

< ~ aibici 
1/2 1/2 =Z(ai bi)(ai ci) 

<- (E  ' n  < 
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It is now easy to show that (~f', ( - , . ) 0 )  is an inner product space. Now 
oaf(X) ___o~, since, for feo~f(X),  we have 

E ai ~. I f ( x ) [ 2  = ~,  a/l[ f II 2 = II f 112 < oo 
xaEi 

Let q~: o'r --* ovg be the inclusion identity map and let o'r =g-0p ~,'r 
Jg. To show that ovg'(X) is embedded in Jr0,  suppose f,  g~af(X) w i t h f s  g. 
Then 

( f ,g )o=Eai  • f ( x ) g ( x ) = E a i ( f , g ) = ( f , g )  �9 
xEEi 

It appears to be quite difficult to characterize the sector structure for 
an arbitrary Jog(X), although, as we shall now see, this can be done for 
specific examples. I f f s  h and ( f ,  g ) = 0 ,  we write f_l_g. 

Example 5.4. We shall characterize the sectors of  the Wright triangle. 
Let (X, d ,  E) be the entity w i t h X =  {xl . . . .  , x6}, d =  {E, F, G} (where E = 
{x,, x2, x3}, F =  {x3, x4, xs}, and G = {Xl, Xs, X6} , and E = {S,, $2, $3, S4} 
(where S, = {x2, xs}, $2 = {x,, x4}, $3 = {x3, x6}, and $4= {x2, x4, x6} ). 
When we considered the Wright triangle in Example 2.5 we only included 
the states Sj,  $2, $3. As we shall see, in that case ~ ( X )  = Z [ ~ ( X ) ] ,  so there 
is only one sector, namely d4~, (X) itself, and dim ~r = 3. With the addition 
of  $4, the situation becomes much more interesting. It is easy to check that 
Y'=Y~d. L e t f e o ~ ( X )  and suppose f ( S ; ) = a i e C ,  i=  1, 2, 3, 4. We then have 
j~(x.) = a2, f(x2) = al q- a4, f(x3) = a3, f(x4) = a2-t- a4, j~(xs) = al ,  and f(x6) = 
a3+a4. Moreover, since II fell = IINFII = l ind,  we have 

la212 + lal +a4l 2= ]a, 12+ [a2+ a4[ 2 

[a312 + [al q-a4[ 2= [aj 12 + la3 + a412 

[a312 +la2+a412=la212 +[a3+aa[ 2 

This is equivalent to 

Re(al - a2 )a4  --- Re(al - a3 )a4  -= Re(az - a3)1i4 = 0 ( 5 . 3 )  

I f  a4=0,  we c a l l f a  type 1 amplitude and if a4r  f i s  a type 2 amplitude. 
We say that MeJg(X) is of  type 1 if e v e r y f e M  is of type 1; otherwise, M 
is of  type 2. It follows from Lemma 5.5 that dim M < 3  for every MeJg(X). 

Lemma 5.10. A sector MeJI (X)  is 3-dimensional if and only if M is 
type 1. 

Proof Since f s  g for any f,  g of type 1, there is precisely one type 1 
sector. This sector is generated by any three linearly independent type 1 
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amplitudes and is 3-dimensional. Conversely, suppose M e  ~t'(X) is 3-dimen- 
sional and letfi ,f2 ,f3 be an orthonormal basis for M. Iff i  , f i , f3  are all type 
1, then any linear combination of them is type 1, so M is type 1. Suppose 

fi  , f i  are type 1 a n d ~  is type 2. Lettingfi(Si)=a~,fi(S~)=b, andf3(S~) = 
ci, i = 1 , 2 , 3 , 4 ,  we have a4=b4=0,  c4#0. Let a=(al,a3,a2) and b = 
(bl, b3, b2)~C 3, and let d =  (dl, d3, d2) eC 3 be a unit vector that is orthogonal 
to both a and b. Since fi • a and b are mutually orthogonal. Since J~• 
andj~•  we have (c~, c3 + c4, c2) orthogonal to a and b. Hence, there exists 
6t3eC, ]a3] = 1, such that 

ct=a3dl, c3 + c4 = a3d3, c2= a3d2 

Similarly, there exist a2, a~ e C,  I a21 = I a l [ = 1, such that 

Cl =ot2dj, c2+c4=tt2dz, C3 = tt2d3 

C2= a id2 ,  cl +c4=aldl, e3=ajd3 

If  d3#0, then otl=ct2. Similarly, if d2#0, al=a3 and if d~r a2=a3 .  
Hence, if d3 r 0, e2 + e4 = a Id2 = e2, which implies c4 = 0, a contradiction. 
Therefore, d3 = 0. Similarly, d2 = d~ = 0, which is a contradiction. Hence, iffi  
and f2 are type 1, then f3 is type 1. Supposefi is type 1 a n d f i , f i  are type 2. 
Again, let f2(S;) =bi,fi(S~) =e;, i=  1, 2, 3, 4. Then b4, c4r Then letting 

b4 
g =f2 = --  f3 (5�9 

C4 

we have ge M and g is type 1. Also, g # 0  and f is  Hence, M has an 
orthonormal basis with two type 1 elements�9 This reduces to the previous 
case. I f f i ,  f2, ~ are all type 2, then again defining g as in (5�9 we have 
g e M is of type 1. This reduces to the previous case. �9 

It follows that there is precisely one type 1 sector and this is the only 
3-dimensional sector. The next lemma characterizes the type 2 sectors. 

Theorem 5�9 11. Every type 2 sector is 2-dimensional and has the form 
M = sp{f, g}, where f is type 1 with f(Si) = 1, i = 1, 2, 3, while g is type 2 

�9 4 
and satisfies ~ i= l g(Si) = O�9 

Proof Let g be a type 2 amplitude, where f(S~)= bi, i = 1, 2, 3, 4. We 
shall show that there exists a n f e ~ ( X )  such tha t f •  We can assume that 
b4 = 1, since otherwise we could consider b4 ig. Let b = / ~  +/~2 + 6 2. Assume 
b~ + b 2 + 6 3 # - 1  and let 

c= (1 -b) / (b ,  + b~ +63+ 1) 
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Letf(Si)=ai,  i = 1, 2, 3, 4, where aj= - c - / ~ ,  i=  1, 2, 3, a4 = 1. Since b4 = 1, 
it follows from (5.3) that Re bj = Re b2 = Re b3. Hence Re al = Re a2 = Re a3; 
so (5.3) is satisfied, which implies that f~g:(X) .  Now 

( f ,  ~>e = a2b2 + (al + a4)(bj + b4) + a3b3 

=a161 +a2b2+a3b3+aj +bl + I 

= -c(b~ +b2+b3) -b -c+  1 =0  

Similarly, ( f ,  ~ ) r  = ( f ,  ~ ) c = 0 .  Hence, f i g .  Now suppose bl +b2+b3 = -1 .  
Let at = 1, i=  1, 2, 3, a4=0. Then 

( f ,  g>E = a2/~2 + al (61 +/~4) -~- a3t~3 

= b l  + b2+t~3 + 1 = 0  

Similarly, <f,  ^ ^ A g>r = ( f ,  g)G=0.  Thus, in both cases we have f i g .  Hence, 
if M is a type 2 sector, dim M > 2 .  Applying Lemma 5.10, we have 
dim M = 2. 

Now let M be an arbitrary type 2 sector. Then M has the form M =  
sp{f, g}, wheref• We can assume t h a t f i s  type 1 and g is type 2. Indeed, 
i f f  and g are type 1, then M would be type 1, which contradicts Lemma 
5.10. I f f  and g are type 2, we can find a linear combination h o f f  and g 
that is nonzero and of type 1. Take u~M such that u:~0 and u_l_h. Then 
M =  sp{h, u}. We thus have M =  sp{f, g}, where f i s  type 1, g is type 2, and 
f i g .  Again, let t ingf(Si)  =ai  and g(Sg)=hi, i = 1, 2, 3, 4, we have 

(f,~,)E=a262+al(61 + 6,) + a3/~3 =0  

<?, = a,tT, + a3(53 + 6 , )  + a2 2 = 0 

It follows that a, = a2 = a3 and b~ + b2 + b3 + b4 = O. Without loss of generality, 
we can assume that a~ = a2 = a3 = 1. �9 

L e t f b e  the type 1 amplitude in Lemma 5.11. It follows from Lemmas 
5.10 and 5.11 that for MI, M2~JI(X) with M~#M2 we have Mi riM2 = 
sp{f} .  Moreover, Z [ ~ ( X ) ] = s p { f } .  Notice that X is not strong, since 
there does not exist a g~@(X) satisfying ~(x~) = -~(x4) = 1. This shows that 
the strongness condition cannot be deleted from Theorem 5.8. 

We now consider sectors in a direct sum Xj @Xz. Since null amplitudes 
are identified with the zero amplitude, it follows from the proof of Theorem 
4.2 that f ~ ( X ~ X z )  if and only if f = ~ f 2  where f~E~(X;) ,  i = 1, 2. 
Moreover, f (x)=jq(x) for every xeX, a n d f ( x ) = ~ ( x )  for every xEX2. It is 
clear that the componentsdq, f2 of f a r e  unique to within a null amplitude. 
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L e m m a  

and f i  s g~. 

Proof 
we have 

5.12. If  f ,  geg~(X~X2),  then f s g  if and only if fi sg~ 

Suppose fi  s g l and f2 s g2. For El e ~r E2 e ~r and E = El wE2 

Z f(x)~(X)= Z ]l(X)~,l(X)+ Z ]2(X)~,=(X) 
x~E x~EI x~E2 

and the right-hand side is independent of Ej,  E2. Hence, f s  g. Conversely, 
i f f s g  and G ,  E[e~Ct, then for a fixed E2~r  we have 

E /I(X)gl(x) m~ E f (x)~(X)-  E f2(X)g2(X) 
x~E! x~E!~E2 x~E2 

= ~" f (x )~(x ) -  Z fffx)~2(x) 
x~EtwE2 xeE2 

= Z 
xeE~ 

Hence, fi  s g~ and similarly f2 s g~. [] 

For ~r176 i = 1, 2, we use the notation 

A,e&= {AeA:AeAI,A &} 

Theorem 5.13. M ~_ ~(X~ @X2) is a sector if and only if M = Mj ~9 M2, 
where M;edt'(X;), i=  1, 2. 

Proof Suppose 

is a sector. Let Mi = {f,-: f e M }  ___ ~ (Xi ) ,  i=  1, 2. Then M~_M~@M2 and by 
Lemma 5.12, Mi~MZ, i = 1, 2. Suppose g~r If  g2r let g=g~t~g2. 
Then, by Lemma 5.12, geM'=M.  Hence, g~eMj. Therefore, M~ = M ] ,  so 
Mj ~ ~ ' (Xj)  and similarly M2 ~ J/(X2). Finally, if gje M;, i = 1, 2, then 

g= glO)g2eMS = M 

Hence, M=Mj@Mz. Conversely, let MiEJC(Xi), i=1 ,2 ,  and let M = 
Ml•M2. By Lemma 5.12, M~_M'. Let geM s, g=g~)g2. By Lemma 5.12, 
gieM/=Mi, i = 1, 2. Hence, geM. Therefore, M = M  ~, so 

Me~t '(Xj @X2) [] 

For  inner product spaces Yg~, Yf2, let Yfl@af'2 be the usual inner 
product space direct sum. That is, 
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where addition and scalar multiplication are defined componentwise and 

Lemma 5.14. If MiEJ/C(Xi), i= 1, 2, then the map 

J: MI~)M2 ~ MI~)M2 

given by J(A~A)--(f~,A) is an isomorphism. 

Proof Clearly, J is a bilinear bijection. Moreover, for E=E1 wE2E~ 
we have 

( A  ~ A ,  g, ~g2~ = E (A e A )  ^ (x)(g, ~g~) ^ (x) 
x ~ E  

= y ~,(x)~,~(x)+ y~ A(x)g:(x) 
x~Ei xcE2 

= <(J] ,J~), (g,, g2)> = <J(jq~f2),  J(g,~)g2)) �9 

Finally, we consider the Cartesian product XI X2. Recall that 

fe a~(x,, x:) 

is a product amplitude i f f - ' - f ~ A , f ~ ( x D ,  i= 1, 2. 

Theorem 5.15. Let f, ge;,~(XiX2) be product amplitudes. T h e n f s g  if 
and only if one of the following conditions holds: (a))q s g~ and .A s g2, 
(b) A _Lg,, (c) A• 

Proof It is clear t h a t f s g  if and only if 

g l ) E , ( A ,  g2)E2 = (J~l ~ ^ , , g , ) r , ( A ,  g2>r~ (5.5) 

for every El, F1 ~ j ,  E2, F2e~2. If (a), (b), or (c) holds, then (5.5) holds, 
so f s  g. Conversely, suppose f s  g. Ifjq Zgl and f2Zg2 then there exists an 
Ele~r such that (3q,g~)e,#0.  Letting FI=EI and applying (5.5) gives 
f2sg2. Similarly, f~ sg~ . N o w  suppose A ~g~. Then there exist El,  F ~ e d  
such that ( f ~ , ~ ) e ,  # ( J~ ,~ )e~ .  Letting F2=E2 and applying (5.5) gives 
(f2,  ~2)e2=0. Hence, J~• Similarly, f2~g2 impliesf~_Lg~. �9 

For M~e~(Xi), i= 1, 2, we define 

Mi M2 = {A f2 : I~M,,  i = 1, 2} 

It follows from Theorem 5.15 that M~M2 is contained in a sector of 
~(X~ X2). In general, M~ M~ is not itself a sector. However, M = ~pp MI M 2  
is a sector and we call M a product sector. 
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6. S Y S T E M S  O F  C O V A R I A N C E  

Let X=(X,  ~t, Z) be an entity and let MeJg(X). In the sequel, we 
shall assume that X is complete. This assumption is made for simplicity. It 
is not absolutely necessary, since the results of this section could be proved 
by working with the completion of  M. If  E e d ,  we have seen that the map 

M U~ f=f~ is a unitary transformation (not neces- U~ : M ~ ~ E  defined by M 
sarily surjective). Moreover, A ~-~ XA is a projection-valued (PV) measure 
from 8(E)  to ~ E .  We then have for Ae~(E).  

PE, f(A) = Y', If(x)[~= (zAuM f, uM f }  
x~.A 

In this sense, E is represented by the PV measure A ~ ZA on 3fZe. 
We would now like to represent E on M. Since UMM is a closed sub- 

space of g e ,  we have 

~ E  = U~M~(UEUM) • 

Define V M : ~ e ~ M  by vM=(uM) -~ on UMM and by vM=o on 
(U~MM)I. Letting pMe be the orthogonal projection of 9fD~ onto UMM, it is 
clear that UEUV~ = P~ and V~U~ u= I. ForA coP(E), define Q~(A) : M ~ M 
by 

Q~(A) = V~ZA U~ = ( Uff)-~ P~ZA U~ 

Then Q~(A) is a linear operator and for e v e r y f ~ M  we have 

<QM(A)f, f )  = < VMZA uM f,, f )  = (pMz. 4 uM f, uM f )  

= <ZA uMf, uMf )  = RE.f (A) >_0 

It follows that QM(A) is a positive operator on M. Moreover, if A eg(F), 
we coffclude that QM(A) = QM(A). We also have that A ~ Qlff(A) is a posi- 
tive operator-valued (POV) measure from g'(E) to M. Indeed. 

QM(E )= V M U M M M eZ~ e=V~U~ =I' 

and if Ai~g(E) are mutually disjoint, we have 

QM( L~A~) = VMz ~,A,U M= V ff E ZA, UM 

= E VffZA, v~u = E Q~(A~) 

where convergence is in the strong operator topology. 
U A We have thus represented E by the POV measure Qe ( ) on M. The 

advantage of this representation is that we can consider all tests simul- 
taneously on the same Hilbert space M. The disadvantage is that we have 
replaced a PV measure by a POV measure. In the literature, POV measures 
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are frequently called unsharp observables and PV measures are called sharp 
observables (Davies, 1976; Holevo, 1982; Prugovefiki, 1984). 

Theorem 6.1. The following statements are equivalent. (1) Q~ is a PV 
,,M pM U M measure. (2) Pzffz,4=zAP~ for all AES(E). (3) XAUir = eZA e for all 

Aeg(E) 

Proof For notational simplicity, we delete the subscript E and the 
superscript M. To prove (2) =~ (3), multiply (2) on the right by U. To prove 
(3) =~ (1), suppose (3) holds. Then for every A e~f(E) we have 

Q(A)2= VZAUVZAU = VZAPXAU = VZAU = Q(A) 

Hence, Q(A) is a projection. Moreover, Q(A) is self-adjoint, since it is posi- 
tive. To prove (1) =~ (2), suppose Q is a PV measure. For A eg(E)  andfE M, 
let zAUf=fl + f2, where)q e UM, fz~(UM) • Then Q(A)f= Vf~ and 

Q(A)2f = VZA UQ(A)f= VZAUVfj = VZAA 

Hence, 

VXAf~ = Q(A)f= Vf~ 

Thus, P ( ) ] - Z A J ] ) = 0 ,  so that 

ZA~ fl =fl -- ZAf~ ~ (UM) • 

Since f l~ UM, we have 

0= <J], XAcfl) = IIzAc.,5 II 2 

Hence, XAc/] =0, so ZAJ] =)q. Since fl =PzAUf, we have 

PzaUf=xAPZAUf 

Since this holds for a l l feM,  we have 

PXAP=XAPZAP 

for all A eg(E) .  Hence, 

(6.1) 

Adding (6.1) and (6.2) gives 

P=2xAPzAP+ P--zAP-- PzAP 

Hence, applying (6.1) gives ZA P= PzAP. Taking adjoints gives PZA = PxAP, 
so (2) holds. �9 

PXA~P=XA~PXA~P (6.2) 
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Let E(M)~E be defined by 

E(M) = {xeE: f(x)  ~0 for some f~M} 

and let E(M) = X e ~ .  Then/~(M) is a closed subspace of ~ e  and U~ 
M~_E(M). Thus, we can consider U~ as a map from M into E(M). 

Corollary 6.2. Q~ is a PV measure if and only if U~: M--. E(M) is 
surjective. 

Proof Suppose U~M= E(M). Then P~=Ze(I~, so for every A Eg(E) 
we have 

P~Z A = Z eO4)Z A = Z AZ E~ M) = z.4 P~ 

Applying Theorem 6.1, we find that Q~t is a PV measure. Conversely, 
suppose Q~ is a PV measure and let xEE(M). Then there is a n f e M  such 
that U~f(x)~0. Applying Theorem 6.1(3) gives 

Z{~} - f (  ) 

Hence, 

& M )  =~p{z{x}: xee(M)}  ~- U~tM 

We conclude that U~M= E(M). li 

Example 6.1. Let (X, d ,  E) be the entity with X =  {xt, x2, y~, y2, Y3}, 
d = (E, F) (where E =  {xt, x2} and F =  {y~, y2, y3} ), and 

= { s , ,  s2, s3, s4} 

(where S, = {x,,y,}, $2 = {x2,y,, y2}, $3 = {x,, x2,y2}, and $4 = {x,, x2,y3} )- 
DefineJ],J~: Z ~ C byf~(S~)= l,J] ^ ( S ) = 0 , S r  andj~(S,) =0,f2($2)= 1, 
and f2(S3)=J~(S4)~ -- 1/ .~.  Then f~(x,)~f~(y~) = 1, f~(x)=0, xOx,,  y,, 
f2(Xl) =f2(y,) = 0,j~(x2) = 1, andf2(yz)=f2(y3)= 1/4~. Clearly,ft ,f2eN(X). 
Sincefl-l-fz, it follows from Lemma 5.5 that M=sp{j~ ,f2} is a sector in 
i f (X) .  Since U~: M ~ ~ut~ is surjective, it follows from Corollary 
6.2 that Q~t is a PV measure. In fact. 

Q~({x, } )f~ =f~, Q~({x2} )A =f2 

Q~({x, } )f2 = Q~({xz} )f~ =0 
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Denoting the l-dimensional projection onto the subspace spanned by f as 
Py, we have a~({xl} ) =P~ and U~({x2} ) =PA. However, U~: M ~ ~ v =  
F(M) is not surjective, since 

dim U~M = 2 < 3 = dim F(M) 

Hence, by Corollary 6.2, Q~ is a POV measure but not a PV measure. In 
fact, 

Q~({y, } )J] =f~ 

Q~({y,} )A = V~tz{y,} U~A = V~zb,,}(A)v= 0 

Q~({y2} )jq = Q~({y3} )J] = 0 

Qff({y2} )fz = vFM z {,,2} U~(A)F = ( U~)-' pFM Z {,2}( fz)F 
u M ) t - I  I t ' . f -  ~ I 4" 

= ( F ] 2 ~ , J 2 ) F - - 2 J 2  

Q~({y3 } )A = �89 A 

Hence, 

and 

Q~({y, } ) = Pyi, Q~({y2} ) = ( 1/2)Pf2 

Q~({y3} )=(1/2)Pf~ �9 

In order to consider interference in the present context, we must extend 
the definition of Q~. We say that A e g ( d )  is (E,f)-bounded if 
f(A)lEeae . If A is (E,f)-bounded, we define Q~(A)f= V~[f(A)IE]. 
This reduces to the usual definition of Q~t, since for A __. E we havef(A) I E = 
zAfe, so 

Q~(A)f= V~zAfE = V~zAU~f 

Theorem 6.3. Let E, Fe~r a n d f e M  and suppose U~ is surjective. Then 
E does not interfere with F relative t o f i f  and only if every A e 8(F) is (E, f ) -  
bounded and 

H Q~t(A)f l[ 2 = (Q~(A)f,f) (6.3) 

Proof Suppose E does not interfere with F relative to f. Then for 
A e $'(F) we have 

II)(A) II ~ = P~,:(A) = PF, s(A) < oo 
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Hence, A is (E, f ) -bounded.  Moreover, since U~ is surjective, 

I1Qe~(h)f II 2 = I1(U~)-'97(A) II e 2 = tl ~ (h)  II 

= PF, f(A) = (Q~(A) f , f )  

Conversely, if every A e S ( F )  is (E , f ) -bounded and (6.3) holds, we haste 

Pc,f (A) = It Q~(A)T 1t 2 = (a f f  (A)f, f )  = Pr, y(A) 

Hence, E does not interfere with F relative to f .  �9 

M A If Aso~(~r is (E , f ) -bounded for eve ry feM,  then Qe ( ) becomes a 
linear operator on M. We can then obtain the following stronger result. 

Corollary 6.4. If  Ue ~ is surjective, then E does not interfere with F 
relative to every f s  M if and only if every A e g(F)  is (E, f ) -bounded for all 
f e M  and we have 

Q~(A)* Q~(A) = Q~(A) 

Proof. By Theorem 6.3, E does not interfere with F relative to every 
f ~ M  if and only if (6.3) holds for a l l f e M ,  Ae~(F). But then 

M 2 M 
ItOe (4)f l l  < I[Or (A)II Ilfll2< Ilfll 2 

so Q~ff(A) is a bounded linear operator on M for all Ae~(F). Moreover, 
for a l l f e M  and Ae#(F), we have 

(a f f  (A)*a~(A)f, f ) = [[a~(A)f ll2=(Q~(A)f, f ) 

The result now follows. �9 

If  g~ and g2 are maps from X into X, we denote their composition by 
g~ ~ g2. A symmetry group on an entity (X, ~r Z) is a group G of bijections 
g: X ~ X with group operation g~g2 =g~ ~ g2 such that for every ge G, Ee d ,  
and SeE we have 

gE = {gx: xEE}es~r 

gS = {gx: xES} ~Y~ 

Notice that g: d ---, d and g: Z ~ ~ are bijections. If a group of bijections 
G satisfies g E ~ d  for every E ~ d  and g~ G, then G automatically preserves 
supports, so the condition gS~ ,  for every SeE and g~G is not as strong as 
it first appears. Indeed, suppose S is a support, geG, E, Fe~ .  Since a 
bijection preserves inclusions and intersections, if (gS)nE~_F, then 
Sc~(g-JE)~g-JF. Since S is a support, Sc~(g-~F)~g-~E. Hence, 
(gS) n F=_E, so gS is a support. In particular, if G is a group of bijections 
on X such that gEese" for all gEG and E ~ r  then G is a symmetry group 



on (X, ~ ,  E(~r In the sequel, G will denote a symmetry group on an entity 
(X, ~', Z). 

Lemma 6.5. For xeX, See,  and geG, S~_ [x] if and only if gS~_ [gx]. 

Proof Suppose S _  [x]. Then there exists an E e d  such that S c~ E= 
x. Since a bijection preserves intersections, gS n gE=gx. Hence, gSc_ [gx]. 
Applying g-t to this result gives the converse. �9 

Forfeovg(X) and gEG, define Us f:  Z + C by Usf(S ) =f(g-~S). 

Lemma 6.6. (1) The map U s is a bijection on A"(X) satisfying 
Us,s2 = Us, Ug, for all g~, g2eG. (2) If M~JI(X),  then U g M ~ ( X )  and U s 
is a unitary transformation from M onto U s M. 

Proof. (1) For r e  J~ We have by Lemma 6.5 that 

(Ugf)^(x) = ~ Usf(S)= ~ f (g- 'S)  = ~', f (g- 'S)  
S=_[x] S=_[x] g-ts=-[g-lx] 

=f(g-'x) (6.4) 

For E e l ,  we have 

r, I(Usf)^(x)l  2= Y'. [f(g-lx)12: E If(g-'x)12=llfll 2 
x ~ E  x ~ E  g - l x E g - l E  

Hence, Ugfeo~~ It is clear that U s is injective. To show that Ug is 
surjective, suppose hEo~g(X). Define f :E--* C by f (S)=h(gS).  Then 
feovt~ and Ugf=h. Finally, for gl, g2eG, we have 

Us,g2f(S ) = f(g~ 'gO 'S) = Us2f(g~-'S) = Ug, Us2f(S ) 

(2) Suppose J] sf2. Then for any EeoC, applying (6.4), we have 

A - - I  ^ - 1  

Z (UsfO^(x)(Usf2)^(x) = 2 f J (g  x)f2(g x) 
x e E  x E E  

^ - - I  ^ - - I  
= E f,(g x)A(g x) 

g - I x E g - I E  

A 
= = < A , A >  

Hence, Usjq s Usj~. It easily follows that UgMEJC(X). The above also 
shows that Ug is a unitary transformation from M onto Ug M. �9 

For MeJC(X), we write gM=UsM~tg(X ). We call g~--~ Ug a 
generalized unitary representation of G. Let EeoC, heaet~ For x~gEe~r 
define Ogh(x)=h(g-'x). It follows from (6.4) that (Uf f )^ (x )  = Os~x ) for 
all xeE. As in the proof of  Lemma 6.6, Ug is a unitary operator from ~r 
onto ~ e  satisfying Ug,g2= Ug, Us= for all gl, g2eG. Hence, g ~ U s is a unitary 
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representation of G. We sayAthat^g~G leaves ME.At(X) 
gM = M. We use the notation M = { f : f ~  M}. 

Corollary 6. 7. gM= M if and only if ~g~t ~ ~ .  

Proof Suppose g M = M  and le t feM.  Then UgfeM, so 

Osf=(Ugf)"  ~&l 

Hence, U~ h~/___~_ 3it: Conversely, suppose 0 s AI_ 571 and let fE M. Then f e  M, 
so (Ugf)" =UgfeM. Hence, Usfr  and g M ~ M .  Since gM~..gg(X), 
gM= M. [] 

The next result shows that Q~t is a generalized system of covariance 
for Us. 

Theorem 6.8. For every geG, MeJ/I(X), EeoC, and Aeg(E)  we have 

Ug ' Q~M ( A) U s = Q~'e(g-' A ) (6.5) 

Proof We first show that 

U~ _ (]sUfl, e (6.6) 

Le t t ingfeM and xeE, we have 

( U~ M Ugf)(x)= (Usf)^(x)  = ~Jg]'(x)= ( (Jg U~,ef)(x) 

so (6.6) holds. We now show that 

(jg r, M , _ r, gM i'r (6.7) 
~t g -  E - - I  E t.,'g 

Let he U~,EM. Then h=  U~,Ef, f~M,  and by (6.6), 

(Jgh = Os~srrm, E.t --r u~Musf~ U[" gM 

Thus, 

509 

invariant if 

Hence, 

<fgsh, h'>=<h, 6 / 'h '>=0  

so that (Jgh~(U~MgM) L. Hence, PgM(Jgh=O and (6.7) holds. 

Pr =  gh= G C' h 

Now suppose hz(U~,eM) I. Then (JsP~,Eh=O. Let h'~ U~MgM. Then h '= 
U~Mf ', f '  zgM. Hence, by (6.6), 

(J~'h'= Og-, U~Mf'= U~,rUg-, f '  z U~, M 
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We next show that 

By (6.6) we have 

Hence, applying (6.7) gives 

Gadder 

U g ~  gM ^ M 

We now show that 

ZA V~MVg = OgZg-'A U~,e (6.9) 

Lettingfea~(X), we have, by (6.6), 

(X A u~M ugf )(x) = X A(x)( U~r Ugf )(x) 

=Z~(X)(OguY'gf)(x) 

= Xg-',4 ( g - I x ) ( U f f ' ~ f ) ( g - ' x )  

,Avy, f)(x) 
Finally, applying (6.9) and (6.8) gives 

Q[M(A)Ug= V~zAu[Mug = v~MOgzg-,A Uy, E 

= 

The result now follows. �9 

Corollary 6.9. (1) If G leaves all sectors invariant, then 

U~-tQM(A) Ug = Q~,e(g-'A) 

for all geG, Me~t(X), Ee,~r and Aeg(E). 
(2) If G leaves all sectors and tests invariant, then 

U - I ~ M . A . U  ~ M .  -i A, g ~et  ) g=~gE~g ) (6.10) 

for all geG, MeJ/(X), Eed ,  and Ae~(E). 
Equation (6.10) is usually called a system of covariance for Ug. It is 

easy to show that G leaves all sectors invariant if and only i f f s  h implies 
f s  Ugh for all geG. This is equivalent to the following condition. If f, heM 
for any Meal(X), then, for every E, Fe~r and geG, we have 

X 
xcE x~F 

UgV~'E= vw (6.8) 
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Example 6.2. Let (X, d ,  ~Z) be the Wright triangle of Example 5.4. If  
we draw X as an equilateral triangle, then it is easy to see that the symmetric 
group on three elements G= {I, R, R z, F~ , F2, F3} is a symmetry group 
on X. Define f i e ~ ( X ) ,  i=  1 . . . . .  5, as follows: jS(Sj) = ~;:, i, j =  1, 2, 3, 4, 
and 

We then have 

1 
f~(so =f~(s2) =j5(s3) = - A ( s , )  = 

4 2  

andS(x)  = 0 otherwise, i = 1 . . . . .  5. We have seen in Example 5.4 that Ms = 
sp{f~ ,A,.A} and M2=sp{J~ , f s}  are sectors in ~ ( X ) .  Notice that E, F, G 
do not interfere with each other relative t o ~ ,  i=  1, 2, 3, 4, since these ampli- 
tude densities are dispersion-free. For f5 we have 

J~5( {/3, X4} )(Xl)= --J~5({X3, X4} )(X2)=J~5( {X3, X4)}(X3)= l~ 
4 z  

Hence, 

=~'~= PF, fs( {X3, X4} ) x , } )  3 , 

and E interferes with F relative to fs.  
Since U~  1 is surjective, by Corollary 6.2, Q~'  is a PV measure. In fact, 

it is easy to show that Q~'({xl} ) = Pf2, Q~'({x2} ) = Pf~, and Q~'({x3} ) = 
P:3. In a similar way Q~'  and Q ~  are PV measures. However, 

V 2U2=sp{?,le, ?,le} 
so by Corollary 6.2, Q ~  is a POV measure which is not a PV measure. In 
fact, it can be shown that QU2({xz} )= P:, and 

Qe ({x3} )=~?:, 

Similar results hold for Q ~  and Q~2. 
Let Ug be the generalized unitary representation of  G on .,'r defined 

previously. Since G leaves Mj invariant, we have 

Ug~ QnM'(A) Ug = Q:I , (g- '  A) 
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for every geG, H~,at, A~g(H). We now consider M2. Since Ug=I on 342, 
we have 

QM2(A) = Q~[H(g-' A) 

for all geG, He~,  and Aeg(H). 
We now show that a generalization of the Nagy extension theorem 

holds for this example. Since QM,, He~r are already PV measures, we need 
not consider them now, so we study Qff2, Hea l .  Let ~ =  C z with inner 
product 

Then ~ is a Hilbert space and i f fs  g, this reduces to the usual inner product 
on J~'(X). Hence, ~ ( X )  is embedded in ~ff and ME (and MI) are closed 
subspaces of ~ .  Let P be the projection of ~ onto i142. Notice that dim ~ = 
4, sincefi , f i , ~  ,J~ are linear independent. It is easy to show that there exists 
an orthonormal basis g~, g2, g3, g4 for ~ such that g4 =J~, g3/j~,  and 

1 
(g,,  fs)  = (g2,)q) = x/2 

Define the PV measure Pe from 8(E) to ~ by 

Pe({x,} )=eg,, Pe({x2} )=Pg3+Pg,, 

Then 

Hence, 

RE({x,} ) = e.2 

PPe(  {x, } ) = ( Pf4 + Pfs) Pg, = Py5 Pc, 

PPe(  {x3} ) = (Pf4 + Pfs)Pg2 = PT5 Pg2 

Pe~({x2} ) = (t+, + e~)(t '~,  + e~,) = t'~ 

PPe({x3} ) f4 = Pf5 Pg,g4 =0 

1 1 
PPe( {X, } )f,= Pf, P~,f5=--~ Pf, g, =~ f, 

Similarly, PPE({x3} )f4 = 0 and PP~({x3} )J~ = �89 Hence, 

PPE({x,} )P = Q~2({x;} ), i= 1, 2, 3 

We conclude that Q~' is the projection of a PV measure. A similar result 
holds for Q~2 and Qff2. �9 
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